moabb.paradigms.LeftRightImagery#
- class moabb.paradigms.LeftRightImagery(fmin=8, fmax=32, events=None, tmin=0.0, tmax=None, baseline=None, channels=None, resample=None, scorer=None, overlap=None)[source]#
Motor Imagery for left hand/right hand classification.
Metric is ‘roc_auc’ by default
- Parameters:
- property scoring#
Property that defines scoring metric (e.g. ROC-AUC or accuracy or f-score), given as a sklearn-compatible string or a compatible sklearn scorer.
Examples using moabb.paradigms.LeftRightImagery#
Tutorial: Within-Session Splitting on Real MI Dataset
Tutorial: Within-Session Splitting on Real MI Dataset