Within Session SSVEP#

This Example shows how to perform a within-session SSVEP analysis on the MAMEM dataset 3, using a CCA pipeline.

The within-session evaluation assesses the performance of a classification pipeline using a 5-fold cross-validation. The reported metric (here, accuracy) is the average of all fold.

# Authors: Sylvain Chevallier <sylvain.chevallier@uvsq.fr>
#
# License: BSD (3-clause)

import warnings

import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.pipeline import make_pipeline

import moabb
from moabb.datasets import Kalunga2016
from moabb.evaluations import WithinSessionEvaluation
from moabb.paradigms import SSVEP
from moabb.pipelines import SSVEP_CCA


warnings.simplefilter(action="ignore", category=FutureWarning)
warnings.simplefilter(action="ignore", category=RuntimeWarning)
moabb.set_log_level("info")

Loading Dataset#

Load 2 subjects of Kalunga2016 dataset

Choose Paradigm#

We select the paradigm SSVEP, applying a bandpass filter (3-15 Hz) on the data and we keep only the first 3 classes, that is stimulation frequency of 13Hz, 17Hz and 21Hz.

paradigm = SSVEP(fmin=10, fmax=40, n_classes=3)

Create Pipelines#

Use a Canonical Correlation Analysis classifier

Get Data (optional)#

To get access to the EEG signals downloaded from the dataset, you could use dataset.get_data(subjects=[subject_id]) to obtain the EEG under MNE format, stored in a dictionary of sessions and runs. Otherwise, paradigm.get_data(dataset=dataset, subjects=[subject_id]) allows to obtain the EEG data in scikit format, the labels and the meta information. In paradigm.get_data, the EEG are preprocessed according to the paradigm requirement.

# sessions = dataset.get_data(subjects=[3])
# X, labels, meta = paradigm.get_data(dataset=dataset, subjects=[3])

Evaluation#

The evaluation will return a DataFrame containing a single AUC score for each subject and pipeline.

overwrite = True  # set to True if we want to overwrite cached results

evaluation = WithinSessionEvaluation(
    paradigm=paradigm, datasets=dataset, suffix="examples", overwrite=overwrite
)
results = evaluation.process(pipeline)

print(results.head())
Kalunga2016-WithinSession:   0%|          | 0/2 [00:00<?, ?it/s]
Kalunga2016-WithinSession:  50%|█████     | 1/2 [00:00<00:00,  2.49it/s]

  0%|                                              | 0.00/2.27M [00:00<?, ?B/s]

  0%|▏                                    | 9.22k/2.27M [00:00<00:33, 67.7kB/s]

  2%|▌                                     | 34.8k/2.27M [00:00<00:15, 146kB/s]

  4%|█▍                                    | 84.0k/2.27M [00:00<00:08, 273kB/s]

  8%|███                                    | 181k/2.27M [00:00<00:04, 503kB/s]

 12%|████▌                                  | 263k/2.27M [00:00<00:03, 589kB/s]

 16%|██████▏                                | 361k/2.27M [00:00<00:02, 694kB/s]

 25%|█████████▎                            | 558k/2.27M [00:00<00:01, 1.05MB/s]

 35%|█████████████▍                        | 803k/2.27M [00:00<00:01, 1.42MB/s]

 42%|███████████████▊                      | 947k/2.27M [00:01<00:00, 1.39MB/s]

 48%|█████████████████▋                   | 1.09M/2.27M [00:01<00:00, 1.35MB/s]

 54%|███████████████████▉                 | 1.22M/2.27M [00:01<00:00, 1.32MB/s]

 60%|██████████████████████               | 1.36M/2.27M [00:01<00:00, 1.28MB/s]

 65%|████████████████████████▏            | 1.49M/2.27M [00:01<00:00, 1.25MB/s]

 71%|██████████████████████████▎          | 1.61M/2.27M [00:01<00:00, 1.22MB/s]

 76%|████████████████████████████▎        | 1.73M/2.27M [00:01<00:00, 1.20MB/s]

 82%|██████████████████████████████▏      | 1.86M/2.27M [00:01<00:00, 1.17MB/s]

 87%|████████████████████████████████▏    | 1.97M/2.27M [00:01<00:00, 1.14MB/s]

 92%|██████████████████████████████████   | 2.09M/2.27M [00:02<00:00, 1.10MB/s]

 97%|███████████████████████████████████▊ | 2.20M/2.27M [00:02<00:00, 1.06MB/s]

  0%|                                              | 0.00/2.27M [00:00<?, ?B/s]
100%|█████████████████████████████████████| 2.27M/2.27M [00:00<00:00, 5.45GB/s]


  0%|                                              | 0.00/2.13M [00:00<?, ?B/s]

  1%|▏                                    | 11.3k/2.13M [00:00<00:24, 85.4kB/s]

  2%|▋                                     | 38.9k/2.13M [00:00<00:11, 177kB/s]

  5%|█▋                                    | 96.3k/2.13M [00:00<00:06, 331kB/s]

  7%|██▊                                    | 155k/2.13M [00:00<00:04, 410kB/s]

 15%|█████▋                                 | 312k/2.13M [00:00<00:02, 778kB/s]

 18%|███████▏                               | 392k/2.13M [00:00<00:02, 764kB/s]

 22%|████████▌                              | 470k/2.13M [00:00<00:02, 749kB/s]

 31%|███████████▋                          | 656k/2.13M [00:00<00:01, 1.05MB/s]

 36%|█████████████▌                        | 762k/2.13M [00:01<00:01, 1.02MB/s]

 41%|███████████████▊                       | 865k/2.13M [00:01<00:01, 998kB/s]

 47%|█████████████████▊                    | 999k/2.13M [00:01<00:01, 1.07MB/s]

 52%|███████████████████▏                 | 1.11M/2.13M [00:01<00:00, 1.04MB/s]

 57%|█████████████████████                | 1.21M/2.13M [00:01<00:00, 1.01MB/s]

 62%|███████████████████████              | 1.33M/2.13M [00:01<00:00, 1.03MB/s]

 67%|████████████████████████▊            | 1.43M/2.13M [00:01<00:00, 1.00MB/s]

 72%|███████████████████████████▎          | 1.53M/2.13M [00:01<00:00, 977kB/s]

 77%|█████████████████████████████         | 1.63M/2.13M [00:01<00:00, 954kB/s]

 82%|██████████████████████████████▉       | 1.74M/2.13M [00:01<00:00, 964kB/s]

 86%|████████████████████████████████▋     | 1.83M/2.13M [00:02<00:00, 942kB/s]

 91%|██████████████████████████████████▍   | 1.93M/2.13M [00:02<00:00, 920kB/s]

 96%|████████████████████████████████████▌ | 2.05M/2.13M [00:02<00:00, 965kB/s]

  0%|                                              | 0.00/2.13M [00:00<?, ?B/s]
100%|█████████████████████████████████████| 2.13M/2.13M [00:00<00:00, 10.4GB/s]

Kalunga2016-WithinSession: 100%|██████████| 2/2 [00:06<00:00,  3.84s/it]
Kalunga2016-WithinSession: 100%|██████████| 2/2 [00:06<00:00,  3.32s/it]
      score      time  samples  ... n_sessions      dataset  pipeline
0  0.762222  0.038551     48.0  ...          1  Kalunga2016       CCA
1  0.917778  0.037791     48.0  ...          1  Kalunga2016       CCA

[2 rows x 9 columns]

Plot Results#

Here we plot the results, indicating the score for each subject

plt.figure()
sns.barplot(data=results, y="score", x="session", hue="subject", palette="viridis")
plot within session ssvep
<Axes: xlabel='session', ylabel='score'>

And the computation time in seconds

plt.figure()
ax = sns.barplot(data=results, y="time", x="session", hue="subject", palette="Reds")
ax.set_ylabel("Time (s)")
plt.show()
plot within session ssvep

Total running time of the script: (0 minutes 8.471 seconds)

Estimated memory usage: 313 MB

Gallery generated by Sphinx-Gallery