Tutorial 5: Creating a dataset class#

# Author: Gregoire Cattan
#
# https://github.com/plcrodrigues/Workshop-MOABB-BCI-Graz-2019

from pyriemann.classification import MDM
from pyriemann.estimation import ERPCovariances
from sklearn.pipeline import make_pipeline

from moabb.datasets import Cattan2019_VR
from moabb.datasets.braininvaders import BI2014a
from moabb.datasets.compound_dataset import CompoundDataset
from moabb.datasets.utils import blocks_reps
from moabb.evaluations import WithinSessionEvaluation
from moabb.paradigms.p300 import P300

Initialization#

This tutorial illustrates how to use the CompoundDataset to: 1) Select a few subjects/sessions/runs in an existing dataset 2) Merge two CompoundDataset into a new one 3) … and finally use this new dataset on a pipeline (this steps is not specific to CompoundDataset)

Let’s define a paradigm and a pipeline for evaluation first.

paradigm = P300()
pipelines = {}
pipelines["MDM"] = make_pipeline(ERPCovariances(estimator="lwf"), MDM(metric="riemann"))

Creation a selection of subject#

We are going to great two CompoundDataset, namely CustomDataset1 & 2. A CompoundDataset accepts a subjects_list of subjects. It is a list of tuple. A tuple contains 4 values: - the original dataset - the subject number to select - the sessions. It can be:

  • a session name (‘0’)

  • a list of sessions ([‘0’, ‘1’])

  • None to select all the sessions attributed to a subject

  • the runs. As for sessions, it can be a single run name, a list or None` (to select all runs).

class CustomDataset1(CompoundDataset):
    def __init__(self):
        biVR = Cattan2019_VR(virtual_reality=True, screen_display=True)
        runs = blocks_reps([0, 2], [0, 1, 2, 3, 4], biVR.n_repetitions)
        subjects_list = [
            (biVR, 1, "0VR", runs),
            (biVR, 2, "0VR", runs),
        ]
        CompoundDataset.__init__(
            self,
            subjects_list=subjects_list,
            code="CustomDataset1",
            interval=[0, 1.0],
        )


class CustomDataset2(CompoundDataset):
    def __init__(self):
        bi2014 = BI2014a()
        subjects_list = [
            (bi2014, 4, None, None),
            (bi2014, 7, None, None),
        ]
        CompoundDataset.__init__(
            self,
            subjects_list=subjects_list,
            code="CustomDataset2",
            interval=[0, 1.0],
        )

Merging the datasets#

We are now going to merge the two CompoundDataset into a single one. The implementation is straight forward. Instead of providing a list of subjects, you should provide a list of CompoundDataset. subjects_list = [CustomDataset1(), CustomDataset2()]

class CustomDataset3(CompoundDataset):
    def __init__(self):
        subjects_list = [CustomDataset1(), CustomDataset2()]
        CompoundDataset.__init__(
            self,
            subjects_list=subjects_list,
            code="CustomDataset3",
            interval=[0, 1.0],
        )

Evaluate and display#

Let’s use a WithinSessionEvaluation to evaluate our new dataset. If you already new how to do this, nothing changed: The CompoundDataset can be used as a normal dataset.

datasets = [CustomDataset3()]
evaluation = WithinSessionEvaluation(
    paradigm=paradigm, datasets=datasets, overwrite=False, suffix="newdataset"
)
scores = evaluation.process(pipelines)

print(scores)
CustomDataset3-WithinSession:   0%|          | 0/4 [00:00<?, ?it/s]No hdf5_path provided, models will not be saved.

CustomDataset3-WithinSession:  25%|██▌       | 1/4 [00:06<00:20,  6.72s/it]No hdf5_path provided, models will not be saved.

CustomDataset3-WithinSession:  50%|█████     | 2/4 [00:13<00:13,  6.52s/it]

  0%|                                              | 0.00/46.4M [00:00<?, ?B/s]

  0%|                                   | 1.02k/46.4M [00:00<1:26:45, 8.92kB/s]

  0%|                                      | 87.0k/46.4M [00:00<02:27, 315kB/s]

  1%|▎                                      | 331k/46.4M [00:00<00:50, 918kB/s]

  2%|▋                                     | 812k/46.4M [00:00<00:21, 2.09MB/s]

  4%|█▎                                   | 1.65M/46.4M [00:00<00:11, 3.99MB/s]

  7%|██▋                                  | 3.33M/46.4M [00:00<00:05, 7.83MB/s]

 14%|█████                                | 6.42M/46.4M [00:00<00:02, 14.8MB/s]

 20%|███████▍                             | 9.39M/46.4M [00:00<00:01, 19.2MB/s]

 28%|██████████▎                          | 12.9M/46.4M [00:01<00:01, 24.0MB/s]

 34%|████████████▋                        | 15.9M/46.4M [00:01<00:01, 25.9MB/s]

 42%|███████████████▋                     | 19.7M/46.4M [00:01<00:00, 29.3MB/s]

 50%|██████████████████▎                  | 23.0M/46.4M [00:01<00:00, 30.6MB/s]

 57%|████████████████████▉                | 26.3M/46.4M [00:01<00:00, 31.3MB/s]

 64%|███████████████████████▌             | 29.5M/46.4M [00:01<00:00, 31.5MB/s]

 71%|██████████████████████████▍          | 33.1M/46.4M [00:01<00:00, 32.8MB/s]

 79%|█████████████████████████████▍       | 36.9M/46.4M [00:01<00:00, 34.1MB/s]

 87%|████████████████████████████████▏    | 40.4M/46.4M [00:01<00:00, 34.0MB/s]

 95%|███████████████████████████████████  | 44.0M/46.4M [00:01<00:00, 34.1MB/s]

  0%|                                              | 0.00/46.4M [00:00<?, ?B/s]
100%|██████████████████████████████████████| 46.4M/46.4M [00:00<00:00, 185GB/s]
No hdf5_path provided, models will not be saved.

CustomDataset3-WithinSession:  75%|███████▌  | 3/4 [00:27<00:10, 10.21s/it]

  0%|                                              | 0.00/74.3M [00:00<?, ?B/s]

  0%|                                     | 12.3k/74.3M [00:00<13:20, 92.8kB/s]

  0%|                                      | 96.3k/74.3M [00:00<03:47, 326kB/s]

  1%|▏                                     | 426k/74.3M [00:00<01:13, 1.01MB/s]

  2%|▌                                    | 1.24M/74.3M [00:00<00:25, 2.92MB/s]

  4%|█▎                                   | 2.62M/74.3M [00:00<00:12, 5.91MB/s]

  6%|██▍                                  | 4.81M/74.3M [00:00<00:06, 10.5MB/s]

 12%|████▎                                | 8.62M/74.3M [00:00<00:03, 17.3MB/s]

 17%|██████▎                              | 12.6M/74.3M [00:01<00:02, 23.6MB/s]

 22%|████████                             | 16.3M/74.3M [00:01<00:02, 23.7MB/s]

 27%|██████████                           | 20.2M/74.3M [00:01<00:01, 27.8MB/s]

 31%|███████████▌                         | 23.3M/74.3M [00:01<00:01, 28.6MB/s]

 36%|█████████████▏                       | 26.5M/74.3M [00:01<00:01, 29.6MB/s]

 41%|███████████████                      | 30.3M/74.3M [00:01<00:01, 31.9MB/s]

 45%|████████████████▋                    | 33.5M/74.3M [00:01<00:01, 31.9MB/s]

 50%|██████████████████▍                  | 37.0M/74.3M [00:01<00:01, 32.7MB/s]

 54%|████████████████████                 | 40.3M/74.3M [00:01<00:01, 32.3MB/s]

 59%|█████████████████████▋               | 43.6M/74.3M [00:02<00:00, 32.4MB/s]

 64%|███████████████████████▌             | 47.2M/74.3M [00:02<00:00, 33.5MB/s]

 69%|█████████████████████████▍           | 51.0M/74.3M [00:02<00:00, 34.8MB/s]

 73%|███████████████████████████▏         | 54.5M/74.3M [00:02<00:00, 34.6MB/s]

 78%|████████████████████████████▉        | 58.2M/74.3M [00:02<00:00, 31.4MB/s]

 84%|██████████████████████████████▉      | 62.1M/74.3M [00:02<00:00, 33.6MB/s]

 88%|████████████████████████████████▋    | 65.5M/74.3M [00:02<00:00, 33.6MB/s]

 93%|██████████████████████████████████▎  | 69.0M/74.3M [00:02<00:00, 32.6MB/s]

 98%|████████████████████████████████████▏| 72.6M/74.3M [00:02<00:00, 33.8MB/s]

  0%|                                              | 0.00/74.3M [00:00<?, ?B/s]
100%|██████████████████████████████████████| 74.3M/74.3M [00:00<00:00, 336GB/s]
No hdf5_path provided, models will not be saved.

CustomDataset3-WithinSession: 100%|██████████| 4/4 [00:56<00:00, 17.59s/it]
CustomDataset3-WithinSession: 100%|██████████| 4/4 [00:56<00:00, 14.15s/it]
      score      time  samples  ... n_sessions         dataset  pipeline
0  0.655000  0.325585    120.0  ...          1  CustomDataset3       MDM
1  0.577500  0.317788    120.0  ...          1  CustomDataset3       MDM
2  0.643062  2.076298    768.0  ...          1  CustomDataset3       MDM
3  0.545191  4.597882   1356.0  ...          1  CustomDataset3       MDM

[4 rows x 9 columns]

Total running time of the script: (0 minutes 57.182 seconds)

Estimated memory usage: 727 MB

Gallery generated by Sphinx-Gallery