Tutorial 5: Creating a dataset class#

# Author: Gregoire Cattan
#
# https://github.com/plcrodrigues/Workshop-MOABB-BCI-Graz-2019

from pyriemann.classification import MDM
from pyriemann.estimation import ERPCovariances
from sklearn.pipeline import make_pipeline

from moabb.datasets import Cattan2019_VR
from moabb.datasets.braininvaders import BI2014a
from moabb.datasets.compound_dataset import CompoundDataset
from moabb.datasets.utils import blocks_reps
from moabb.evaluations import WithinSessionEvaluation
from moabb.paradigms.p300 import P300

Initialization#

This tutorial illustrates how to use the CompoundDataset to: 1) Select a few subjects/sessions/runs in an existing dataset 2) Merge two CompoundDataset into a new one 3) … and finally use this new dataset on a pipeline (this steps is not specific to CompoundDataset)

Let’s define a paradigm and a pipeline for evaluation first.

paradigm = P300()
pipelines = {}
pipelines["MDM"] = make_pipeline(ERPCovariances(estimator="lwf"), MDM(metric="riemann"))

Creation a selection of subject#

We are going to great two CompoundDataset, namely CustomDataset1 & 2. A CompoundDataset accepts a subjects_list of subjects. It is a list of tuple. A tuple contains 4 values:

  • the original dataset

  • the subject number to select

  • the sessions. It can be:

    • a session name (‘0’)

    • a list of sessions ([‘0’, ‘1’])

    • None to select all the sessions attributed to a subject

  • the runs. As for sessions, it can be a single run name, a list or None` (to select all runs).

class CustomDataset1(CompoundDataset):
    def __init__(self):
        biVR = Cattan2019_VR(virtual_reality=True, screen_display=True)
        runs = blocks_reps([0, 2], [0, 1, 2, 3, 4], biVR.n_repetitions)
        subjects_list = [
            (biVR, 1, "0VR", runs),
            (biVR, 2, "0VR", runs),
        ]
        CompoundDataset.__init__(
            self,
            subjects_list=subjects_list,
            code="CustomDataset1",
            interval=[0, 1.0],
        )


class CustomDataset2(CompoundDataset):
    def __init__(self):
        bi2014 = BI2014a()
        subjects_list = [
            (bi2014, 4, None, None),
            (bi2014, 7, None, None),
        ]
        CompoundDataset.__init__(
            self,
            subjects_list=subjects_list,
            code="CustomDataset2",
            interval=[0, 1.0],
        )

Merging the datasets#

We are now going to merge the two CompoundDataset into a single one. The implementation is straight forward. Instead of providing a list of subjects, you should provide a list of CompoundDataset. subjects_list = [CustomDataset1(), CustomDataset2()]

class CustomDataset3(CompoundDataset):
    def __init__(self):
        subjects_list = [CustomDataset1(), CustomDataset2()]
        CompoundDataset.__init__(
            self,
            subjects_list=subjects_list,
            code="CustomDataset3",
            interval=[0, 1.0],
        )

Evaluate and display#

Let’s use a WithinSessionEvaluation to evaluate our new dataset. If you already new how to do this, nothing changed: The CompoundDataset can be used as a normal dataset.

datasets = [CustomDataset3()]
evaluation = WithinSessionEvaluation(
    paradigm=paradigm, datasets=datasets, overwrite=False, suffix="newdataset"
)
scores = evaluation.process(pipelines)

print(scores)
CustomDataset3-WithinSession:   0%|          | 0/4 [00:00<?, ?it/s]
CustomDataset3-WithinSession:  25%|██▌       | 1/4 [00:36<01:50, 36.95s/it]
CustomDataset3-WithinSession:  50%|█████     | 2/4 [01:12<01:12, 36.31s/it]

  0%|                                              | 0.00/46.4M [00:00<?, ?B/s]

  0%|                                     | 12.3k/46.4M [00:00<08:46, 88.1kB/s]

  0%|                                      | 33.8k/46.4M [00:00<05:20, 145kB/s]

  0%|                                      | 96.3k/46.4M [00:00<02:22, 324kB/s]

  0%|                                       | 134k/46.4M [00:00<02:20, 330kB/s]

  0%|▏                                      | 207k/46.4M [00:00<01:43, 445kB/s]

  1%|▎                                      | 304k/46.4M [00:00<01:18, 589kB/s]

  1%|▎                                      | 385k/46.4M [00:00<01:12, 634kB/s]

  1%|▍                                      | 531k/46.4M [00:00<00:54, 849kB/s]

  1%|▌                                      | 630k/46.4M [00:01<00:53, 860kB/s]

  2%|▌                                      | 728k/46.4M [00:01<00:52, 867kB/s]

  2%|▋                                     | 876k/46.4M [00:01<00:45, 1.01MB/s]

  2%|▊                                    | 1.02M/46.4M [00:01<00:41, 1.10MB/s]

  3%|▉                                    | 1.17M/46.4M [00:01<00:38, 1.16MB/s]

  3%|█                                    | 1.29M/46.4M [00:01<00:40, 1.12MB/s]

  3%|█▏                                   | 1.43M/46.4M [00:01<00:38, 1.18MB/s]

  3%|█▏                                   | 1.55M/46.4M [00:01<00:39, 1.15MB/s]

  4%|█▎                                   | 1.67M/46.4M [00:01<00:40, 1.11MB/s]

  4%|█▍                                   | 1.78M/46.4M [00:02<00:41, 1.08MB/s]

  4%|█▌                                   | 1.89M/46.4M [00:02<00:42, 1.05MB/s]

  4%|█▋                                    | 1.99M/46.4M [00:02<00:56, 785kB/s]

  5%|█▋                                    | 2.10M/46.4M [00:02<00:52, 836kB/s]

  5%|█▊                                    | 2.20M/46.4M [00:02<00:52, 850kB/s]

  5%|█▉                                    | 2.31M/46.4M [00:02<00:49, 899kB/s]

  5%|██                                    | 2.45M/46.4M [00:02<00:45, 977kB/s]

  6%|██                                   | 2.59M/46.4M [00:02<00:40, 1.07MB/s]

  6%|██▏                                  | 2.71M/46.4M [00:03<00:41, 1.06MB/s]

  6%|██▏                                  | 2.81M/46.4M [00:03<00:42, 1.03MB/s]

  6%|██▎                                  | 2.92M/46.4M [00:03<00:43, 1.01MB/s]

  7%|██▍                                  | 3.03M/46.4M [00:03<00:42, 1.01MB/s]

  7%|██▌                                   | 3.14M/46.4M [00:03<00:43, 985kB/s]

  7%|██▋                                   | 3.24M/46.4M [00:03<00:45, 957kB/s]

  7%|██▋                                  | 3.38M/46.4M [00:03<00:40, 1.05MB/s]

  8%|██▊                                  | 3.48M/46.4M [00:03<00:42, 1.02MB/s]

  8%|███                                  | 3.85M/46.4M [00:03<00:24, 1.71MB/s]

 10%|███▌                                 | 4.46M/46.4M [00:04<00:14, 2.83MB/s]

 11%|████                                 | 5.10M/46.4M [00:04<00:29, 1.42MB/s]

 12%|████▍                                | 5.55M/46.4M [00:04<00:22, 1.79MB/s]

 14%|█████▏                               | 6.50M/46.4M [00:04<00:13, 2.93MB/s]

 16%|█████▉                               | 7.42M/46.4M [00:05<00:09, 3.95MB/s]

 17%|██████▍                              | 8.11M/46.4M [00:05<00:08, 4.42MB/s]

 19%|██████▉                              | 8.68M/46.4M [00:05<00:08, 4.60MB/s]

 20%|███████▎                             | 9.24M/46.4M [00:05<00:12, 3.09MB/s]

 21%|███████▋                             | 9.68M/46.4M [00:05<00:11, 3.27MB/s]

 22%|████████                             | 10.2M/46.4M [00:05<00:10, 3.49MB/s]

 23%|████████▌                            | 10.8M/46.4M [00:05<00:08, 4.01MB/s]

 25%|█████████▏                           | 11.5M/46.4M [00:06<00:07, 4.64MB/s]

 26%|█████████▌                           | 12.0M/46.4M [00:06<00:09, 3.57MB/s]

 27%|█████████▉                           | 12.5M/46.4M [00:06<00:09, 3.67MB/s]

 28%|██████████▎                          | 12.9M/46.4M [00:06<00:08, 3.80MB/s]

 29%|██████████▊                          | 13.6M/46.4M [00:06<00:07, 4.32MB/s]

 31%|███████████▍                         | 14.3M/46.4M [00:06<00:06, 4.87MB/s]

 32%|███████████▉                         | 14.9M/46.4M [00:06<00:06, 5.11MB/s]

 34%|████████████▍                        | 15.6M/46.4M [00:06<00:05, 5.36MB/s]

 35%|████████████▉                        | 16.3M/46.4M [00:07<00:05, 5.28MB/s]

 36%|█████████████▍                       | 16.9M/46.4M [00:07<00:05, 5.30MB/s]

 38%|██████████████                       | 17.6M/46.4M [00:07<00:06, 4.67MB/s]

 39%|██████████████▍                      | 18.2M/46.4M [00:07<00:05, 4.75MB/s]

 40%|██████████████▉                      | 18.8M/46.4M [00:07<00:05, 4.97MB/s]

 42%|███████████████▍                     | 19.4M/46.4M [00:07<00:05, 5.21MB/s]

 44%|████████████████                     | 20.2M/46.4M [00:07<00:04, 5.66MB/s]

 45%|████████████████▌                    | 20.8M/46.4M [00:08<00:06, 3.83MB/s]

 46%|████████████████▉                    | 21.2M/46.4M [00:08<00:06, 3.93MB/s]

 47%|█████████████████▎                   | 21.7M/46.4M [00:08<00:06, 3.97MB/s]

 48%|█████████████████▋                   | 22.2M/46.4M [00:08<00:06, 4.02MB/s]

 49%|██████████████████▏                  | 22.9M/46.4M [00:08<00:05, 4.67MB/s]

 51%|██████████████████▊                  | 23.6M/46.4M [00:08<00:04, 5.16MB/s]

 52%|███████████████████▎                 | 24.3M/46.4M [00:08<00:04, 5.49MB/s]

 54%|███████████████████▉                 | 24.9M/46.4M [00:08<00:03, 5.60MB/s]

 55%|████████████████████▌                | 25.7M/46.4M [00:09<00:03, 6.01MB/s]

 57%|█████████████████████                | 26.4M/46.4M [00:09<00:03, 5.97MB/s]

 59%|█████████████████████▋               | 27.2M/46.4M [00:09<00:03, 6.33MB/s]

 60%|██████████████████████▏              | 27.8M/46.4M [00:09<00:03, 6.19MB/s]

 62%|██████████████████████▊              | 28.6M/46.4M [00:09<00:02, 6.44MB/s]

 63%|███████████████████████▍             | 29.4M/46.4M [00:09<00:02, 6.47MB/s]

 65%|████████████████████████             | 30.2M/46.4M [00:09<00:02, 6.76MB/s]

 67%|████████████████████████▌            | 30.9M/46.4M [00:10<00:04, 3.14MB/s]

 68%|█████████████████████████            | 31.4M/46.4M [00:10<00:04, 3.40MB/s]

 69%|█████████████████████████▍           | 31.9M/46.4M [00:10<00:03, 3.63MB/s]

 70%|█████████████████████████▊           | 32.5M/46.4M [00:10<00:03, 3.62MB/s]

 71%|██████████████████████████▍          | 33.1M/46.4M [00:10<00:03, 4.18MB/s]

 73%|██████████████████████████▉          | 33.7M/46.4M [00:10<00:02, 4.33MB/s]

 74%|███████████████████████████▎         | 34.3M/46.4M [00:10<00:02, 4.51MB/s]

 75%|███████████████████████████▉         | 35.0M/46.4M [00:11<00:02, 4.92MB/s]

 76%|████████████████████████████▎        | 35.5M/46.4M [00:11<00:02, 4.88MB/s]

 78%|████████████████████████████▋        | 36.0M/46.4M [00:11<00:02, 4.81MB/s]

 79%|█████████████████████████████        | 36.5M/46.4M [00:11<00:02, 4.69MB/s]

 80%|█████████████████████████████▋       | 37.2M/46.4M [00:11<00:01, 5.05MB/s]

 81%|██████████████████████████████       | 37.7M/46.4M [00:11<00:02, 3.35MB/s]

 82%|██████████████████████████████▍      | 38.1M/46.4M [00:11<00:02, 3.44MB/s]

 83%|██████████████████████████████▊      | 38.7M/46.4M [00:12<00:02, 3.79MB/s]

 84%|███████████████████████████████▏     | 39.1M/46.4M [00:12<00:02, 2.75MB/s]

 88%|████████████████████████████████▍    | 40.8M/46.4M [00:12<00:01, 5.32MB/s]

 95%|██████████████████████████████████▉  | 43.9M/46.4M [00:12<00:00, 10.6MB/s]

  0%|                                              | 0.00/46.4M [00:00<?, ?B/s]
100%|██████████████████████████████████████| 46.4M/46.4M [00:00<00:00, 166GB/s]

CustomDataset3-WithinSession:  75%|███████▌  | 3/4 [01:38<00:31, 31.49s/it]

  0%|                                              | 0.00/74.3M [00:00<?, ?B/s]

  0%|                                   | 1.02k/74.3M [00:00<2:47:45, 7.38kB/s]

  0%|                                      | 32.8k/74.3M [00:00<07:55, 156kB/s]

  0%|                                      | 82.9k/74.3M [00:00<04:20, 285kB/s]

  0%|                                       | 183k/74.3M [00:00<02:22, 521kB/s]

  0%|                                       | 238k/74.3M [00:00<02:25, 510kB/s]

  0%|▏                                      | 312k/74.3M [00:00<02:11, 562kB/s]

  1%|▏                                      | 373k/74.3M [00:00<02:12, 556kB/s]

  1%|▏                                      | 438k/74.3M [00:00<02:10, 565kB/s]

  1%|▎                                      | 569k/74.3M [00:01<01:37, 755kB/s]

  1%|▎                                      | 651k/74.3M [00:01<01:38, 750kB/s]

  1%|▍                                      | 798k/74.3M [00:01<01:19, 922kB/s]

  1%|▍                                      | 912k/74.3M [00:01<01:16, 954kB/s]

  1%|▌                                    | 1.04M/74.3M [00:01<01:11, 1.02MB/s]

  2%|▌                                    | 1.16M/74.3M [00:01<01:11, 1.02MB/s]

  2%|▋                                     | 1.26M/74.3M [00:01<01:13, 994kB/s]

  2%|▋                                    | 1.40M/74.3M [00:01<01:09, 1.05MB/s]

  2%|▊                                    | 1.51M/74.3M [00:01<01:11, 1.02MB/s]

  2%|▊                                     | 1.61M/74.3M [00:02<01:13, 990kB/s]

  2%|▉                                    | 1.83M/74.3M [00:02<00:56, 1.27MB/s]

  3%|▉                                    | 1.96M/74.3M [00:02<00:58, 1.23MB/s]

  3%|█                                    | 2.08M/74.3M [00:02<01:00, 1.19MB/s]

  3%|█                                    | 2.20M/74.3M [00:02<01:02, 1.16MB/s]

  3%|█▏                                   | 2.31M/74.3M [00:02<01:04, 1.12MB/s]

  3%|█▏                                   | 2.43M/74.3M [00:02<01:05, 1.09MB/s]

  3%|█▎                                   | 2.54M/74.3M [00:02<01:07, 1.06MB/s]

  4%|█▎                                   | 2.70M/74.3M [00:02<01:01, 1.17MB/s]

  4%|█▍                                   | 2.81M/74.3M [00:03<01:07, 1.06MB/s]

  4%|█▍                                   | 2.92M/74.3M [00:03<01:09, 1.03MB/s]

  4%|█▌                                   | 3.02M/74.3M [00:03<01:11, 1.00MB/s]

  4%|█▌                                    | 3.13M/74.3M [00:03<01:12, 977kB/s]

  4%|█▋                                   | 3.28M/74.3M [00:03<01:03, 1.11MB/s]

  5%|█▋                                   | 3.40M/74.3M [00:03<01:05, 1.08MB/s]

  5%|█▊                                   | 3.61M/74.3M [00:03<00:53, 1.32MB/s]

  5%|█▊                                   | 3.74M/74.3M [00:03<00:54, 1.28MB/s]

  5%|█▉                                   | 3.87M/74.3M [00:03<00:56, 1.25MB/s]

  5%|█▉                                   | 4.00M/74.3M [00:04<00:58, 1.20MB/s]

  6%|██                                   | 4.12M/74.3M [00:04<01:01, 1.14MB/s]

  6%|██                                   | 4.23M/74.3M [00:04<01:03, 1.11MB/s]

  6%|██▏                                  | 4.34M/74.3M [00:04<01:05, 1.07MB/s]

  6%|██▏                                  | 4.45M/74.3M [00:04<01:07, 1.04MB/s]

  6%|██▎                                  | 4.56M/74.3M [00:04<01:09, 1.00MB/s]

  6%|██▍                                   | 4.66M/74.3M [00:04<01:12, 966kB/s]

  6%|██▍                                   | 4.76M/74.3M [00:04<01:14, 939kB/s]

  7%|██▍                                   | 4.85M/74.3M [00:04<01:16, 912kB/s]

  7%|██▌                                   | 4.94M/74.3M [00:05<01:18, 888kB/s]

  7%|██▌                                   | 5.03M/74.3M [00:05<01:20, 862kB/s]

  7%|██▌                                   | 5.12M/74.3M [00:05<01:22, 839kB/s]

  7%|██▋                                   | 5.20M/74.3M [00:05<01:24, 816kB/s]

  7%|██▋                                   | 5.33M/74.3M [00:05<01:15, 911kB/s]

  7%|██▊                                   | 5.44M/74.3M [00:05<01:12, 946kB/s]

  8%|██▊                                  | 5.57M/74.3M [00:05<01:07, 1.01MB/s]

  8%|██▊                                  | 5.69M/74.3M [00:05<01:07, 1.01MB/s]

  8%|██▉                                   | 5.79M/74.3M [00:05<01:09, 984kB/s]

  8%|██▉                                  | 5.93M/74.3M [00:06<01:03, 1.07MB/s]

  8%|███                                  | 6.10M/74.3M [00:06<00:57, 1.19MB/s]

  8%|███▏                                 | 6.29M/74.3M [00:06<00:49, 1.36MB/s]

  9%|███▏                                 | 6.43M/74.3M [00:06<00:51, 1.32MB/s]

  9%|███▎                                 | 6.56M/74.3M [00:06<00:52, 1.28MB/s]

  9%|███▎                                 | 6.69M/74.3M [00:06<00:54, 1.24MB/s]

  9%|███▍                                 | 6.82M/74.3M [00:06<00:56, 1.20MB/s]

  9%|███▍                                 | 6.94M/74.3M [00:06<00:57, 1.16MB/s]

  9%|███▌                                 | 7.05M/74.3M [00:06<00:59, 1.13MB/s]

 10%|███▌                                 | 7.17M/74.3M [00:07<01:01, 1.09MB/s]

 10%|███▋                                 | 7.28M/74.3M [00:07<01:03, 1.06MB/s]

 10%|███▋                                 | 7.38M/74.3M [00:07<01:04, 1.03MB/s]

 10%|███▊                                  | 7.49M/74.3M [00:07<01:06, 999kB/s]

 10%|███▉                                  | 7.59M/74.3M [00:07<01:09, 962kB/s]

 10%|███▉                                  | 7.68M/74.3M [00:07<01:11, 934kB/s]

 10%|███▉                                  | 7.78M/74.3M [00:07<01:13, 909kB/s]

 11%|████                                  | 7.91M/74.3M [00:07<01:06, 992kB/s]

 11%|████                                  | 8.01M/74.3M [00:08<01:09, 958kB/s]

 11%|████▏                                | 8.32M/74.3M [00:08<00:44, 1.48MB/s]

 11%|████▏                                | 8.47M/74.3M [00:08<00:46, 1.43MB/s]

 12%|████▎                                | 8.61M/74.3M [00:08<00:47, 1.38MB/s]

 12%|████▎                                | 8.75M/74.3M [00:08<01:03, 1.03MB/s]

 12%|████▍                                | 8.86M/74.3M [00:08<01:03, 1.03MB/s]

 12%|████▍                                | 8.97M/74.3M [00:08<01:04, 1.01MB/s]

 12%|████▋                                 | 9.08M/74.3M [00:08<01:06, 981kB/s]

 12%|████▌                                | 9.20M/74.3M [00:09<01:04, 1.01MB/s]

 13%|████▋                                | 9.32M/74.3M [00:09<01:03, 1.02MB/s]

 13%|████▊                                 | 9.42M/74.3M [00:09<01:05, 991kB/s]

 13%|████▊                                 | 9.52M/74.3M [00:09<01:06, 966kB/s]

 13%|████▉                                 | 9.62M/74.3M [00:09<01:08, 942kB/s]

 13%|████▉                                | 9.91M/74.3M [00:09<00:45, 1.42MB/s]

 14%|█████                                | 10.1M/74.3M [00:09<00:43, 1.48MB/s]

 14%|█████                                | 10.2M/74.3M [00:09<00:44, 1.43MB/s]

 14%|█████▏                               | 10.4M/74.3M [00:09<00:45, 1.39MB/s]

 14%|█████▏                               | 10.5M/74.3M [00:10<00:47, 1.35MB/s]

 14%|█████▎                               | 10.7M/74.3M [00:10<01:02, 1.01MB/s]

 15%|█████▎                               | 10.8M/74.3M [00:10<01:02, 1.02MB/s]

 15%|█████▍                               | 11.0M/74.3M [00:10<00:51, 1.22MB/s]

 15%|█████▌                               | 11.1M/74.3M [00:10<00:52, 1.21MB/s]

 15%|█████▌                               | 11.2M/74.3M [00:10<00:52, 1.20MB/s]

 15%|█████▋                               | 11.4M/74.3M [00:10<00:53, 1.17MB/s]

 15%|█████▋                               | 11.5M/74.3M [00:10<00:54, 1.15MB/s]

 16%|█████▊                               | 11.6M/74.3M [00:11<00:56, 1.12MB/s]

 16%|█████▊                               | 11.7M/74.3M [00:11<00:57, 1.10MB/s]

 16%|█████▉                               | 12.0M/74.3M [00:11<00:40, 1.55MB/s]

 16%|██████                               | 12.2M/74.3M [00:11<00:41, 1.51MB/s]

 17%|██████▏                              | 12.3M/74.3M [00:11<00:42, 1.45MB/s]

 17%|██████▏                              | 12.5M/74.3M [00:11<00:43, 1.42MB/s]

 17%|██████▎                              | 12.6M/74.3M [00:11<00:44, 1.38MB/s]

 17%|██████▎                              | 12.7M/74.3M [00:11<00:45, 1.34MB/s]

 17%|██████▍                              | 12.9M/74.3M [00:11<00:47, 1.29MB/s]

 18%|██████▋                               | 13.0M/74.3M [00:12<01:03, 960kB/s]

 18%|██████▌                              | 13.1M/74.3M [00:12<00:59, 1.04MB/s]

 18%|██████▌                              | 13.3M/74.3M [00:12<00:57, 1.06MB/s]

 18%|██████▋                              | 13.4M/74.3M [00:12<00:58, 1.05MB/s]

 18%|██████▋                              | 13.5M/74.3M [00:12<00:58, 1.04MB/s]

 18%|██████▊                              | 13.6M/74.3M [00:12<00:59, 1.02MB/s]

 19%|██████▊                              | 13.8M/74.3M [00:12<00:51, 1.17MB/s]

 19%|██████▉                              | 13.9M/74.3M [00:12<00:49, 1.21MB/s]

 19%|███████                              | 14.1M/74.3M [00:13<00:50, 1.20MB/s]

 19%|███████                              | 14.2M/74.3M [00:13<00:50, 1.19MB/s]

 19%|███████▏                             | 14.3M/74.3M [00:13<00:51, 1.16MB/s]

 19%|███████▏                             | 14.4M/74.3M [00:13<00:53, 1.13MB/s]

 20%|███████▎                             | 14.7M/74.3M [00:13<00:41, 1.42MB/s]

 20%|███████▍                             | 14.8M/74.3M [00:13<00:43, 1.38MB/s]

 20%|███████▍                             | 14.9M/74.3M [00:13<00:44, 1.34MB/s]

 20%|███████▌                             | 15.1M/74.3M [00:13<00:46, 1.26MB/s]

 20%|███████▌                             | 15.2M/74.3M [00:13<00:48, 1.22MB/s]

 21%|███████▋                             | 15.3M/74.3M [00:14<00:49, 1.19MB/s]

 21%|███████▋                             | 15.5M/74.3M [00:14<00:45, 1.28MB/s]

 21%|███████▊                             | 15.7M/74.3M [00:14<00:37, 1.56MB/s]

 21%|███████▉                             | 15.9M/74.3M [00:14<00:38, 1.51MB/s]

 22%|███████▉                             | 16.1M/74.3M [00:14<00:39, 1.47MB/s]

 22%|████████                             | 16.2M/74.3M [00:14<00:40, 1.42MB/s]

 22%|████████▏                            | 16.3M/74.3M [00:14<00:54, 1.06MB/s]

 22%|████████▏                            | 16.5M/74.3M [00:14<00:54, 1.05MB/s]

 22%|████████▎                            | 16.6M/74.3M [00:15<00:55, 1.05MB/s]

 22%|████████▎                            | 16.7M/74.3M [00:15<00:55, 1.03MB/s]

 23%|████████▍                            | 16.8M/74.3M [00:15<00:50, 1.13MB/s]

 23%|████████▍                            | 17.0M/74.3M [00:15<00:52, 1.10MB/s]

 23%|████████▌                            | 17.1M/74.3M [00:15<00:53, 1.07MB/s]

 23%|████████▌                            | 17.2M/74.3M [00:15<00:48, 1.18MB/s]

 23%|████████▋                            | 17.4M/74.3M [00:15<00:49, 1.16MB/s]

 24%|████████▋                            | 17.5M/74.3M [00:15<00:50, 1.12MB/s]

 24%|████████▊                            | 17.6M/74.3M [00:15<00:53, 1.06MB/s]

 24%|████████▊                            | 17.7M/74.3M [00:16<00:54, 1.03MB/s]

 24%|████████▊                            | 17.8M/74.3M [00:16<00:56, 1.00MB/s]

 24%|█████████▏                            | 17.9M/74.3M [00:16<00:57, 977kB/s]

 24%|████████▉                            | 18.0M/74.3M [00:16<00:55, 1.01MB/s]

 24%|█████████                            | 18.1M/74.3M [00:16<00:53, 1.05MB/s]

 25%|█████████                            | 18.3M/74.3M [00:16<00:53, 1.04MB/s]

 25%|█████████▏                           | 18.5M/74.3M [00:16<00:44, 1.26MB/s]

 25%|█████████▎                           | 18.6M/74.3M [00:16<00:45, 1.22MB/s]

 25%|█████████▎                           | 18.7M/74.3M [00:16<00:46, 1.18MB/s]

 25%|█████████▍                           | 18.8M/74.3M [00:17<00:48, 1.15MB/s]

 26%|█████████▍                           | 18.9M/74.3M [00:17<00:49, 1.12MB/s]

 26%|█████████▍                           | 19.1M/74.3M [00:17<00:50, 1.09MB/s]

 26%|█████████▌                           | 19.2M/74.3M [00:17<00:52, 1.06MB/s]

 26%|█████████▌                           | 19.3M/74.3M [00:17<00:53, 1.03MB/s]

 26%|█████████▉                            | 19.4M/74.3M [00:17<00:54, 998kB/s]

 26%|█████████▉                            | 19.5M/74.3M [00:17<00:56, 970kB/s]

 26%|██████████                            | 19.6M/74.3M [00:17<00:58, 937kB/s]

 27%|█████████▊                           | 19.7M/74.3M [00:17<00:48, 1.12MB/s]

 27%|█████████▉                           | 19.9M/74.3M [00:18<00:49, 1.09MB/s]

 27%|█████████▉                           | 20.0M/74.3M [00:18<00:51, 1.06MB/s]

 27%|██████████                           | 20.1M/74.3M [00:18<00:52, 1.03MB/s]

 27%|██████████▎                           | 20.2M/74.3M [00:18<00:54, 997kB/s]

 27%|██████████▏                          | 20.3M/74.3M [00:18<00:48, 1.12MB/s]

 28%|██████████▏                          | 20.4M/74.3M [00:18<00:49, 1.09MB/s]

 28%|██████████▏                          | 20.6M/74.3M [00:18<00:50, 1.05MB/s]

 28%|██████████▎                          | 20.7M/74.3M [00:18<00:52, 1.02MB/s]

 28%|██████████▋                           | 20.8M/74.3M [00:18<00:53, 993kB/s]

 28%|██████████▋                           | 20.9M/74.3M [00:19<00:55, 964kB/s]

 28%|██████████▋                           | 21.0M/74.3M [00:19<00:56, 938kB/s]

 28%|██████████▊                           | 21.1M/74.3M [00:19<00:58, 917kB/s]

 29%|██████████▊                          | 21.7M/74.3M [00:19<00:22, 2.32MB/s]

 31%|███████████▍                         | 22.9M/74.3M [00:19<00:10, 5.06MB/s]

 34%|████████████▋                        | 25.4M/74.3M [00:19<00:04, 10.5MB/s]

 39%|██████████████▎                      | 28.6M/74.3M [00:19<00:02, 16.0MB/s]

 43%|███████████████▉                     | 31.9M/74.3M [00:19<00:02, 20.1MB/s]

 47%|█████████████████▍                   | 35.1M/74.3M [00:19<00:01, 22.7MB/s]

 52%|███████████████████▏                 | 38.5M/74.3M [00:20<00:01, 25.1MB/s]

 56%|████████████████████▌                | 41.2M/74.3M [00:20<00:01, 25.0MB/s]

 60%|██████████████████████               | 44.3M/74.3M [00:20<00:01, 25.7MB/s]

 64%|███████████████████████▊             | 47.9M/74.3M [00:20<00:00, 27.7MB/s]

 68%|█████████████████████████▏           | 50.7M/74.3M [00:20<00:00, 26.9MB/s]

 73%|███████████████████████████          | 54.4M/74.3M [00:20<00:00, 28.8MB/s]

 77%|████████████████████████████▌        | 57.2M/74.3M [00:20<00:00, 28.0MB/s]

 81%|█████████████████████████████▉       | 60.0M/74.3M [00:21<00:01, 14.2MB/s]

 84%|██████████████████████████████▉      | 62.2M/74.3M [00:21<00:01, 8.73MB/s]

 86%|███████████████████████████████▊     | 63.8M/74.3M [00:22<00:01, 5.93MB/s]

 88%|████████████████████████████████▍    | 65.0M/74.3M [00:22<00:01, 4.93MB/s]

 89%|████████████████████████████████▊    | 65.9M/74.3M [00:23<00:01, 4.79MB/s]

 90%|█████████████████████████████████▏   | 66.7M/74.3M [00:23<00:01, 4.90MB/s]

 91%|█████████████████████████████████▌   | 67.4M/74.3M [00:23<00:01, 3.80MB/s]

 92%|█████████████████████████████████▊   | 68.0M/74.3M [00:23<00:01, 3.94MB/s]

 92%|██████████████████████████████████▏  | 68.5M/74.3M [00:23<00:01, 4.05MB/s]

 93%|██████████████████████████████████▍  | 69.0M/74.3M [00:23<00:01, 4.15MB/s]

 94%|██████████████████████████████████▋  | 69.5M/74.3M [00:24<00:01, 4.17MB/s]

 94%|██████████████████████████████████▉  | 70.0M/74.3M [00:24<00:01, 4.18MB/s]

 95%|███████████████████████████████████  | 70.5M/74.3M [00:24<00:00, 4.15MB/s]

 95%|███████████████████████████████████▎ | 70.9M/74.3M [00:24<00:00, 4.10MB/s]

 96%|███████████████████████████████████▌ | 71.3M/74.3M [00:24<00:00, 4.04MB/s]

 97%|███████████████████████████████████▊ | 71.8M/74.3M [00:24<00:00, 3.95MB/s]

 97%|███████████████████████████████████▉ | 72.2M/74.3M [00:24<00:00, 3.87MB/s]

 98%|████████████████████████████████████▏| 72.6M/74.3M [00:24<00:00, 3.79MB/s]

 98%|████████████████████████████████████▎| 72.9M/74.3M [00:24<00:00, 3.69MB/s]

 99%|████████████████████████████████████▌| 73.3M/74.3M [00:25<00:00, 3.59MB/s]

 99%|████████████████████████████████████▋| 73.7M/74.3M [00:25<00:00, 3.59MB/s]

100%|████████████████████████████████████▉| 74.2M/74.3M [00:25<00:00, 3.83MB/s]

  0%|                                              | 0.00/74.3M [00:00<?, ?B/s]
100%|██████████████████████████████████████| 74.3M/74.3M [00:00<00:00, 345GB/s]

CustomDataset3-WithinSession: 100%|██████████| 4/4 [02:30<00:00, 39.39s/it]
CustomDataset3-WithinSession: 100%|██████████| 4/4 [02:30<00:00, 37.52s/it]
      score      time  samples  ... n_sessions         dataset  pipeline
0  0.500000  0.364118    120.0  ...          1  CustomDataset3       MDM
1  0.642500  0.309329    120.0  ...          1  CustomDataset3       MDM
2  0.645327  2.160094    768.0  ...          1  CustomDataset3       MDM
3  0.521336  4.628620   1356.0  ...          1  CustomDataset3       MDM

[4 rows x 9 columns]

Total running time of the script: (2 minutes 31.261 seconds)

Estimated memory usage: 576 MB

Gallery generated by Sphinx-Gallery