Note
Go to the end to download the full example code.
Tutorial 5: Creating a dataset class#
# Author: Gregoire Cattan
#
# https://github.com/plcrodrigues/Workshop-MOABB-BCI-Graz-2019
from pyriemann.classification import MDM
from pyriemann.estimation import ERPCovariances
from sklearn.pipeline import make_pipeline
from moabb.datasets import Cattan2019_VR
from moabb.datasets.braininvaders import BI2014a
from moabb.datasets.compound_dataset import CompoundDataset
from moabb.datasets.utils import blocks_reps
from moabb.evaluations import WithinSessionEvaluation
from moabb.paradigms.p300 import P300
Initialization#
This tutorial illustrates how to use the CompoundDataset to: 1) Select a few subjects/sessions/runs in an existing dataset 2) Merge two CompoundDataset into a new one 3) … and finally use this new dataset on a pipeline (this steps is not specific to CompoundDataset)
Let’s define a paradigm and a pipeline for evaluation first.
paradigm = P300()
pipelines = {}
pipelines["MDM"] = make_pipeline(ERPCovariances(estimator="lwf"), MDM(metric="riemann"))
Creation a selection of subject#
We are going to great two CompoundDataset, namely CustomDataset1 & 2. A CompoundDataset accepts a subjects_list of subjects. It is a list of tuple. A tuple contains 4 values:
the original dataset
the subject number to select
the sessions. It can be:
a session name (‘0’)
a list of sessions ([‘0’, ‘1’])
None to select all the sessions attributed to a subject
the runs. As for sessions, it can be a single run name, a list or None` (to select all runs).
class CustomDataset1(CompoundDataset):
def __init__(self):
biVR = Cattan2019_VR(virtual_reality=True, screen_display=True)
runs = blocks_reps([0, 2], [0, 1, 2, 3, 4], biVR.n_repetitions)
subjects_list = [
(biVR, 1, "0VR", runs),
(biVR, 2, "0VR", runs),
]
CompoundDataset.__init__(
self,
subjects_list=subjects_list,
code="CustomDataset1",
interval=[0, 1.0],
)
class CustomDataset2(CompoundDataset):
def __init__(self):
bi2014 = BI2014a()
subjects_list = [
(bi2014, 4, None, None),
(bi2014, 7, None, None),
]
CompoundDataset.__init__(
self,
subjects_list=subjects_list,
code="CustomDataset2",
interval=[0, 1.0],
)
Merging the datasets#
We are now going to merge the two CompoundDataset into a single one. The implementation is straight forward. Instead of providing a list of subjects, you should provide a list of CompoundDataset. subjects_list = [CustomDataset1(), CustomDataset2()]
class CustomDataset3(CompoundDataset):
def __init__(self):
subjects_list = [CustomDataset1(), CustomDataset2()]
CompoundDataset.__init__(
self,
subjects_list=subjects_list,
code="CustomDataset3",
interval=[0, 1.0],
)
Evaluate and display#
Let’s use a WithinSessionEvaluation to evaluate our new dataset. If you already new how to do this, nothing changed: The CompoundDataset can be used as a normal dataset.
datasets = [CustomDataset3()]
evaluation = WithinSessionEvaluation(
paradigm=paradigm, datasets=datasets, overwrite=False, suffix="newdataset"
)
scores = evaluation.process(pipelines)
print(scores)
CustomDataset3-WithinSession: 0%| | 0/4 [00:00<?, ?it/s]
CustomDataset3-WithinSession: 25%|██▌ | 1/4 [00:06<00:20, 6.98s/it]
CustomDataset3-WithinSession: 50%|█████ | 2/4 [00:13<00:13, 6.81s/it]
0%| | 0.00/46.4M [00:00<?, ?B/s]
0%| | 13.3k/46.4M [00:00<07:52, 98.2kB/s]
0%| | 84.0k/46.4M [00:00<02:46, 277kB/s]
1%|▎ | 368k/46.4M [00:00<00:53, 860kB/s]
2%|▊ | 1.01M/46.4M [00:00<00:19, 2.33MB/s]
5%|█▋ | 2.16M/46.4M [00:00<00:09, 4.86MB/s]
9%|███▏ | 4.05M/46.4M [00:00<00:04, 8.83MB/s]
16%|██████ | 7.58M/46.4M [00:00<00:02, 16.4MB/s]
23%|████████▌ | 10.7M/46.4M [00:01<00:01, 20.7MB/s]
31%|███████████▎ | 14.2M/46.4M [00:01<00:01, 24.9MB/s]
38%|██████████████▏ | 17.9M/46.4M [00:01<00:01, 28.4MB/s]
46%|████████████████▉ | 21.2M/46.4M [00:01<00:00, 30.0MB/s]
54%|███████████████████▊ | 24.9M/46.4M [00:01<00:00, 31.9MB/s]
61%|██████████████████████▍ | 28.1M/46.4M [00:01<00:00, 32.0MB/s]
68%|█████████████████████████ | 31.5M/46.4M [00:01<00:00, 32.4MB/s]
76%|███████████████████████████▉ | 35.1M/46.4M [00:01<00:00, 33.6MB/s]
83%|██████████████████████████████▋ | 38.5M/46.4M [00:01<00:00, 33.5MB/s]
91%|█████████████████████████████████▋ | 42.2M/46.4M [00:01<00:00, 34.7MB/s]
98%|████████████████████████████████████▍| 45.7M/46.4M [00:02<00:00, 34.3MB/s]
0%| | 0.00/46.4M [00:00<?, ?B/s]
100%|██████████████████████████████████████| 46.4M/46.4M [00:00<00:00, 107GB/s]
CustomDataset3-WithinSession: 75%|███████▌ | 3/4 [00:29<00:10, 10.71s/it]
0%| | 0.00/74.3M [00:00<?, ?B/s]
0%| | 13.3k/74.3M [00:00<10:29, 118kB/s]
0%| | 84.0k/74.3M [00:00<04:14, 292kB/s]
0%|▏ | 313k/74.3M [00:00<01:15, 978kB/s]
1%|▍ | 784k/74.3M [00:00<00:43, 1.68MB/s]
2%|▉ | 1.76M/74.3M [00:00<00:19, 3.80MB/s]
5%|█▋ | 3.50M/74.3M [00:00<00:09, 7.52MB/s]
9%|███▍ | 6.99M/74.3M [00:00<00:04, 15.2MB/s]
14%|█████▏ | 10.4M/74.3M [00:01<00:03, 20.7MB/s]
19%|██████▊ | 13.8M/74.3M [00:01<00:02, 24.3MB/s]
24%|████████▊ | 17.6M/74.3M [00:01<00:01, 28.5MB/s]
29%|██████████▌ | 21.3M/74.3M [00:01<00:01, 30.6MB/s]
33%|████████████▍ | 24.9M/74.3M [00:01<00:01, 32.1MB/s]
38%|██████████████ | 28.2M/74.3M [00:01<00:01, 32.5MB/s]
42%|███████████████▋ | 31.6M/74.3M [00:01<00:01, 31.9MB/s]
47%|█████████████████▌ | 35.2M/74.3M [00:01<00:01, 33.2MB/s]
52%|███████████████████▎ | 38.8M/74.3M [00:01<00:01, 33.7MB/s]
57%|█████████████████████ | 42.4M/74.3M [00:01<00:00, 34.3MB/s]
62%|██████████████████████▊ | 45.8M/74.3M [00:02<00:00, 34.0MB/s]
67%|████████████████████████▌ | 49.4M/74.3M [00:02<00:00, 34.5MB/s]
71%|██████████████████████████▎ | 52.9M/74.3M [00:02<00:00, 34.5MB/s]
76%|████████████████████████████▏ | 56.5M/74.3M [00:02<00:00, 34.7MB/s]
81%|█████████████████████████████▉ | 60.0M/74.3M [00:02<00:00, 34.8MB/s]
85%|███████████████████████████████▌ | 63.5M/74.3M [00:02<00:00, 34.4MB/s]
90%|█████████████████████████████████▎ | 67.0M/74.3M [00:02<00:00, 34.5MB/s]
95%|███████████████████████████████████ | 70.5M/74.3M [00:02<00:00, 34.6MB/s]
100%|████████████████████████████████████▊| 74.0M/74.3M [00:02<00:00, 34.2MB/s]
0%| | 0.00/74.3M [00:00<?, ?B/s]
100%|██████████████████████████████████████| 74.3M/74.3M [00:00<00:00, 275GB/s]
CustomDataset3-WithinSession: 100%|██████████| 4/4 [00:56<00:00, 17.46s/it]
CustomDataset3-WithinSession: 100%|██████████| 4/4 [00:56<00:00, 14.21s/it]
score time samples ... n_sessions dataset pipeline
0 0.635000 0.389871 120.0 ... 1 CustomDataset3 MDM
1 0.600000 0.359119 120.0 ... 1 CustomDataset3 MDM
2 0.638159 2.193877 768.0 ... 1 CustomDataset3 MDM
3 0.542359 4.396564 1356.0 ... 1 CustomDataset3 MDM
[4 rows x 9 columns]
Total running time of the script: (0 minutes 58.113 seconds)
Estimated memory usage: 469 MB