Tutorial 5: Creating a dataset class#

# Author: Gregoire Cattan
#
# https://github.com/plcrodrigues/Workshop-MOABB-BCI-Graz-2019

from pyriemann.classification import MDM
from pyriemann.estimation import ERPCovariances
from sklearn.pipeline import make_pipeline

from moabb.datasets import Cattan2019_VR
from moabb.datasets.braininvaders import BI2014a
from moabb.datasets.compound_dataset import CompoundDataset
from moabb.datasets.utils import blocks_reps
from moabb.evaluations import WithinSessionEvaluation
from moabb.paradigms.p300 import P300

Initialization#

This tutorial illustrates how to use the CompoundDataset to: 1) Select a few subjects/sessions/runs in an existing dataset 2) Merge two CompoundDataset into a new one 3) … and finally use this new dataset on a pipeline (this steps is not specific to CompoundDataset)

Let’s define a paradigm and a pipeline for evaluation first.

paradigm = P300()
pipelines = {}
pipelines["MDM"] = make_pipeline(ERPCovariances(estimator="lwf"), MDM(metric="riemann"))

Creation a selection of subject#

We are going to great two CompoundDataset, namely CustomDataset1 & 2. A CompoundDataset accepts a subjects_list of subjects. It is a list of tuple. A tuple contains 4 values:

  • the original dataset

  • the subject number to select

  • the sessions. It can be:

    • a session name (‘0’)

    • a list of sessions ([‘0’, ‘1’])

    • None to select all the sessions attributed to a subject

  • the runs. As for sessions, it can be a single run name, a list or None` (to select all runs).

class CustomDataset1(CompoundDataset):
    def __init__(self):
        biVR = Cattan2019_VR(virtual_reality=True, screen_display=True)
        runs = blocks_reps([0, 2], [0, 1, 2, 3, 4], biVR.n_repetitions)
        subjects_list = [
            (biVR, 1, "0VR", runs),
            (biVR, 2, "0VR", runs),
        ]
        CompoundDataset.__init__(
            self,
            subjects_list=subjects_list,
            code="CustomDataset1",
            interval=[0, 1.0],
        )


class CustomDataset2(CompoundDataset):
    def __init__(self):
        bi2014 = BI2014a()
        subjects_list = [
            (bi2014, 4, None, None),
            (bi2014, 7, None, None),
        ]
        CompoundDataset.__init__(
            self,
            subjects_list=subjects_list,
            code="CustomDataset2",
            interval=[0, 1.0],
        )

Merging the datasets#

We are now going to merge the two CompoundDataset into a single one. The implementation is straight forward. Instead of providing a list of subjects, you should provide a list of CompoundDataset. subjects_list = [CustomDataset1(), CustomDataset2()]

class CustomDataset3(CompoundDataset):
    def __init__(self):
        subjects_list = [CustomDataset1(), CustomDataset2()]
        CompoundDataset.__init__(
            self,
            subjects_list=subjects_list,
            code="CustomDataset3",
            interval=[0, 1.0],
        )

Evaluate and display#

Let’s use a WithinSessionEvaluation to evaluate our new dataset. If you already new how to do this, nothing changed: The CompoundDataset can be used as a normal dataset.

datasets = [CustomDataset3()]
evaluation = WithinSessionEvaluation(
    paradigm=paradigm, datasets=datasets, overwrite=False, suffix="newdataset"
)
scores = evaluation.process(pipelines)

print(scores)
CustomDataset3-WithinSession:   0%|          | 0/4 [00:00<?, ?it/s]
CustomDataset3-WithinSession:  25%|██▌       | 1/4 [00:44<02:13, 44.58s/it]
CustomDataset3-WithinSession:  50%|█████     | 2/4 [01:35<01:36, 48.04s/it]

  0%|                                              | 0.00/46.4M [00:00<?, ?B/s]

  0%|                                     | 12.3k/46.4M [00:00<09:55, 78.0kB/s]

  0%|                                      | 41.0k/46.4M [00:00<05:13, 148kB/s]

  0%|                                      | 92.2k/46.4M [00:00<03:10, 243kB/s]

  0%|▏                                      | 168k/46.4M [00:00<02:09, 357kB/s]

  1%|▏                                      | 253k/46.4M [00:00<01:44, 444kB/s]

  1%|▎                                      | 315k/46.4M [00:00<01:44, 442kB/s]

  1%|▎                                      | 417k/46.4M [00:01<01:26, 531kB/s]

  1%|▍                                      | 499k/46.4M [00:01<01:24, 545kB/s]

  1%|▌                                      | 630k/46.4M [00:01<01:09, 662kB/s]

  2%|▋                                      | 776k/46.4M [00:01<00:58, 776kB/s]

  2%|▋                                      | 858k/46.4M [00:01<01:03, 715kB/s]

  2%|▊                                     | 1.01M/46.4M [00:01<00:55, 813kB/s]

  2%|▉                                     | 1.09M/46.4M [00:01<01:01, 739kB/s]

  3%|▉                                     | 1.19M/46.4M [00:02<01:02, 725kB/s]

  3%|█                                     | 1.26M/46.4M [00:02<01:08, 661kB/s]

  3%|█                                     | 1.35M/46.4M [00:02<01:09, 652kB/s]

  4%|█▎                                   | 1.68M/46.4M [00:02<00:38, 1.15MB/s]

  4%|█▌                                   | 1.90M/46.4M [00:02<00:34, 1.29MB/s]

  6%|██                                   | 2.64M/46.4M [00:02<00:17, 2.45MB/s]

  9%|███▎                                 | 4.19M/46.4M [00:02<00:08, 4.98MB/s]

 11%|███▉                                 | 4.96M/46.4M [00:03<00:23, 1.74MB/s]

 11%|████▎                                | 5.33M/46.4M [00:04<00:23, 1.73MB/s]

 12%|████▍                                | 5.64M/46.4M [00:04<00:22, 1.80MB/s]

 14%|█████▏                               | 6.50M/46.4M [00:04<00:15, 2.53MB/s]

 15%|█████▋                               | 7.07M/46.4M [00:04<00:13, 2.83MB/s]

 17%|██████▏                              | 7.76M/46.4M [00:04<00:11, 3.27MB/s]

 18%|██████▌                              | 8.30M/46.4M [00:04<00:11, 3.39MB/s]

 19%|███████▏                             | 8.95M/46.4M [00:04<00:10, 3.70MB/s]

 21%|███████▌                             | 9.53M/46.4M [00:05<00:09, 3.78MB/s]

 22%|████████                             | 10.0M/46.4M [00:05<00:09, 3.76MB/s]

 23%|████████▌                            | 10.8M/46.4M [00:05<00:08, 4.09MB/s]

 25%|█████████                            | 11.4M/46.4M [00:05<00:08, 4.23MB/s]

 26%|█████████▌                           | 12.0M/46.4M [00:05<00:07, 4.30MB/s]

 27%|██████████                           | 12.6M/46.4M [00:05<00:07, 4.23MB/s]

 29%|██████████▌                          | 13.3M/46.4M [00:05<00:07, 4.35MB/s]

 30%|███████████                          | 13.8M/46.4M [00:06<00:07, 4.24MB/s]

 31%|███████████▍                         | 14.3M/46.4M [00:06<00:08, 3.97MB/s]

 32%|███████████▊                         | 14.8M/46.4M [00:06<00:07, 4.23MB/s]

 33%|████████████▎                        | 15.4M/46.4M [00:06<00:07, 4.19MB/s]

 35%|████████████▊                        | 16.1M/46.4M [00:06<00:06, 4.38MB/s]

 36%|█████████████▎                       | 16.8M/46.4M [00:06<00:06, 4.47MB/s]

 38%|█████████████▉                       | 17.4M/46.4M [00:06<00:06, 4.48MB/s]

 39%|██████████████▍                      | 18.1M/46.4M [00:07<00:06, 4.49MB/s]

 41%|██████████████▉                      | 18.8M/46.4M [00:07<00:05, 4.73MB/s]

 42%|███████████████▌                     | 19.5M/46.4M [00:07<00:05, 4.73MB/s]

 43%|████████████████                     | 20.1M/46.4M [00:07<00:05, 4.69MB/s]

 45%|████████████████▌                    | 20.7M/46.4M [00:07<00:05, 4.52MB/s]

 46%|█████████████████                    | 21.4M/46.4M [00:07<00:05, 4.61MB/s]

 48%|█████████████████▋                   | 22.1M/46.4M [00:07<00:05, 4.28MB/s]

 49%|██████████████████▏                  | 22.8M/46.4M [00:08<00:05, 4.40MB/s]

 51%|██████████████████▋                  | 23.5M/46.4M [00:08<00:05, 4.49MB/s]

 52%|███████████████████▎                 | 24.2M/46.4M [00:08<00:04, 4.64MB/s]

 53%|███████████████████▊                 | 24.8M/46.4M [00:08<00:04, 4.56MB/s]

 55%|████████████████████▎                | 25.5M/46.4M [00:08<00:04, 4.57MB/s]

 56%|████████████████████▊                | 26.2M/46.4M [00:08<00:04, 4.68MB/s]

 58%|█████████████████████▎               | 26.8M/46.4M [00:08<00:04, 4.59MB/s]

 59%|█████████████████████▉               | 27.4M/46.4M [00:09<00:04, 4.62MB/s]

 61%|██████████████████████▍              | 28.1M/46.4M [00:09<00:03, 4.65MB/s]

 62%|██████████████████████▉              | 28.7M/46.4M [00:09<00:03, 4.57MB/s]

 63%|███████████████████████▎             | 29.2M/46.4M [00:09<00:04, 4.17MB/s]

 64%|███████████████████████▌             | 29.6M/46.4M [00:09<00:04, 3.36MB/s]

 65%|████████████████████████             | 30.2M/46.4M [00:09<00:04, 3.52MB/s]

 66%|████████████████████████▌            | 30.7M/46.4M [00:10<00:04, 3.56MB/s]

 67%|████████████████████████▊            | 31.2M/46.4M [00:10<00:04, 3.47MB/s]

 69%|█████████████████████████▍           | 31.9M/46.4M [00:10<00:03, 3.85MB/s]

 70%|█████████████████████████▉           | 32.5M/46.4M [00:10<00:03, 3.94MB/s]

 72%|██████████████████████████▌          | 33.3M/46.4M [00:10<00:02, 4.39MB/s]

 73%|███████████████████████████          | 33.9M/46.4M [00:10<00:02, 4.51MB/s]

 75%|███████████████████████████▌         | 34.6M/46.4M [00:10<00:02, 4.54MB/s]

 76%|████████████████████████████         | 35.2M/46.4M [00:11<00:02, 4.34MB/s]

 77%|████████████████████████████▌        | 35.8M/46.4M [00:11<00:02, 4.48MB/s]

 79%|█████████████████████████████        | 36.5M/46.4M [00:11<00:02, 4.48MB/s]

 80%|█████████████████████████████▌       | 37.1M/46.4M [00:11<00:02, 4.48MB/s]

 82%|██████████████████████████████▏      | 37.9M/46.4M [00:11<00:01, 4.75MB/s]

 83%|██████████████████████████████▋      | 38.4M/46.4M [00:11<00:01, 4.43MB/s]

 84%|███████████████████████████████      | 38.9M/46.4M [00:11<00:01, 4.17MB/s]

 85%|███████████████████████████████▌     | 39.6M/46.4M [00:12<00:01, 4.36MB/s]

 87%|████████████████████████████████     | 40.3M/46.4M [00:12<00:01, 4.40MB/s]

 88%|████████████████████████████████▌    | 40.8M/46.4M [00:12<00:01, 4.29MB/s]

 89%|████████████████████████████████▉    | 41.3M/46.4M [00:13<00:03, 1.69MB/s]

 90%|█████████████████████████████████▎   | 41.7M/46.4M [00:13<00:02, 1.93MB/s]

 91%|█████████████████████████████████▋   | 42.3M/46.4M [00:13<00:01, 2.27MB/s]

 92%|██████████████████████████████████▏  | 42.9M/46.4M [00:13<00:01, 2.74MB/s]

 94%|██████████████████████████████████▋  | 43.5M/46.4M [00:13<00:00, 2.97MB/s]

 95%|███████████████████████████████████  | 44.0M/46.4M [00:13<00:00, 3.09MB/s]

 96%|███████████████████████████████████▌ | 44.6M/46.4M [00:13<00:00, 3.53MB/s]

 98%|████████████████████████████████████ | 45.3M/46.4M [00:14<00:00, 3.83MB/s]

 99%|████████████████████████████████████▌| 45.9M/46.4M [00:14<00:00, 3.87MB/s]

  0%|                                              | 0.00/46.4M [00:00<?, ?B/s]
100%|██████████████████████████████████████| 46.4M/46.4M [00:00<00:00, 171GB/s]

CustomDataset3-WithinSession:  75%|███████▌  | 3/4 [02:02<00:38, 38.60s/it]

  0%|                                              | 0.00/74.3M [00:00<?, ?B/s]

  0%|                                     | 11.3k/74.3M [00:00<20:31, 60.3kB/s]

  0%|                                      | 34.8k/74.3M [00:00<10:52, 114kB/s]

  0%|                                      | 84.0k/74.3M [00:00<05:53, 210kB/s]

  0%|                                       | 148k/74.3M [00:00<04:08, 298kB/s]

  0%|                                       | 230k/74.3M [00:00<03:09, 391kB/s]

  0%|▏                                      | 345k/74.3M [00:00<02:21, 522kB/s]

  1%|▏                                      | 427k/74.3M [00:01<02:17, 535kB/s]

  1%|▎                                      | 525k/74.3M [00:01<02:07, 579kB/s]

  1%|▎                                      | 672k/74.3M [00:01<01:43, 710kB/s]

  1%|▍                                      | 754k/74.3M [00:01<01:50, 664kB/s]

  1%|▍                                      | 901k/74.3M [00:01<01:35, 769kB/s]

  1%|▌                                      | 999k/74.3M [00:01<01:39, 739kB/s]

  1%|▌                                     | 1.08M/74.3M [00:01<01:46, 685kB/s]

  2%|▋                                     | 1.23M/74.3M [00:02<01:34, 773kB/s]

  2%|▋                                     | 1.33M/74.3M [00:02<01:38, 744kB/s]

  2%|▋                                     | 1.44M/74.3M [00:02<01:36, 753kB/s]

  2%|▊                                     | 1.52M/74.3M [00:02<01:47, 677kB/s]

  2%|▊                                     | 1.62M/74.3M [00:02<01:45, 688kB/s]

  2%|▊                                     | 1.70M/74.3M [00:02<01:51, 651kB/s]

  2%|▉                                     | 1.77M/74.3M [00:02<02:02, 591kB/s]

  3%|▉                                     | 1.88M/74.3M [00:03<01:51, 646kB/s]

  3%|█                                     | 2.03M/74.3M [00:03<01:35, 754kB/s]

  3%|█                                     | 2.14M/74.3M [00:03<01:34, 763kB/s]

  3%|█▏                                    | 2.26M/74.3M [00:03<01:33, 767kB/s]

  3%|█▏                                    | 2.36M/74.3M [00:03<01:37, 738kB/s]

  3%|█▏                                    | 2.44M/74.3M [00:03<01:44, 686kB/s]

  3%|█▎                                    | 2.54M/74.3M [00:03<01:45, 681kB/s]

  4%|█▎                                    | 2.63M/74.3M [00:04<01:45, 678kB/s]

  4%|█▍                                    | 2.78M/74.3M [00:04<01:32, 769kB/s]

  4%|█▍                                    | 2.88M/74.3M [00:04<01:39, 717kB/s]

  4%|█▌                                    | 3.01M/74.3M [00:04<01:32, 768kB/s]

  4%|█▌                                    | 3.13M/74.3M [00:04<01:32, 772kB/s]

  4%|█▋                                    | 3.27M/74.3M [00:04<01:24, 840kB/s]

  5%|█▋                                    | 3.39M/74.3M [00:05<01:26, 821kB/s]

  5%|█▊                                    | 3.47M/74.3M [00:05<01:35, 740kB/s]

  5%|█▊                                    | 3.57M/74.3M [00:05<01:38, 719kB/s]

  5%|█▉                                    | 3.66M/74.3M [00:05<01:40, 705kB/s]

  5%|█▉                                    | 3.76M/74.3M [00:05<01:41, 694kB/s]

  5%|█▉                                    | 3.84M/74.3M [00:05<01:48, 652kB/s]

  5%|██                                    | 3.93M/74.3M [00:05<01:52, 624kB/s]

  5%|██                                    | 4.01M/74.3M [00:06<01:56, 604kB/s]

  6%|██▏                                   | 4.16M/74.3M [00:06<01:36, 724kB/s]

  6%|██▏                                   | 4.24M/74.3M [00:06<01:43, 675kB/s]

  6%|██▏                                   | 4.33M/74.3M [00:06<01:44, 672kB/s]

  6%|██▎                                   | 4.45M/74.3M [00:06<01:38, 705kB/s]

  6%|██▎                                   | 4.55M/74.3M [00:06<01:40, 692kB/s]

  6%|██▎                                   | 4.63M/74.3M [00:06<01:46, 652kB/s]

  6%|██▍                                   | 4.71M/74.3M [00:07<01:52, 621kB/s]

  6%|██▍                                   | 4.81M/74.3M [00:07<01:49, 637kB/s]

  7%|██▌                                   | 4.94M/74.3M [00:07<01:37, 712kB/s]

  7%|██▌                                   | 5.04M/74.3M [00:07<01:38, 701kB/s]

  7%|██▌                                   | 5.12M/74.3M [00:07<01:44, 659kB/s]

  7%|██▋                                   | 5.20M/74.3M [00:07<01:49, 629kB/s]

  7%|██▋                                   | 5.30M/74.3M [00:07<01:47, 642kB/s]

  7%|██▊                                   | 5.38M/74.3M [00:08<01:51, 618kB/s]

  7%|██▊                                   | 5.46M/74.3M [00:08<01:54, 599kB/s]

  8%|██▊                                   | 5.59M/74.3M [00:08<01:39, 687kB/s]

  8%|██▉                                   | 5.74M/74.3M [00:08<01:27, 782kB/s]

  8%|███                                  | 6.10M/74.3M [00:08<00:52, 1.29MB/s]

  9%|███▏                                 | 6.48M/74.3M [00:08<00:40, 1.67MB/s]

 10%|███▊                                 | 7.54M/74.3M [00:09<00:19, 3.36MB/s]

 12%|████▌                                | 9.09M/74.3M [00:09<00:11, 5.55MB/s]

 13%|████▉                                | 9.93M/74.3M [00:09<00:11, 5.58MB/s]

 14%|█████▏                               | 10.5M/74.3M [00:09<00:12, 5.04MB/s]

 15%|█████▍                               | 11.0M/74.3M [00:09<00:13, 4.57MB/s]

 16%|█████▊                               | 11.5M/74.3M [00:09<00:14, 4.35MB/s]

 17%|██████▏                              | 12.3M/74.3M [00:09<00:13, 4.61MB/s]

 17%|██████▍                              | 13.0M/74.3M [00:10<00:13, 4.60MB/s]

 18%|██████▊                              | 13.7M/74.3M [00:10<00:13, 4.58MB/s]

 19%|███████▏                             | 14.3M/74.3M [00:10<00:13, 4.59MB/s]

 20%|███████▎                             | 14.8M/74.3M [00:10<00:15, 3.74MB/s]

 20%|███████▌                             | 15.2M/74.3M [00:10<00:17, 3.46MB/s]

 21%|███████▉                             | 15.8M/74.3M [00:10<00:15, 3.72MB/s]

 22%|████████▏                            | 16.5M/74.3M [00:10<00:14, 3.91MB/s]

 23%|████████▍                            | 17.0M/74.3M [00:11<00:14, 3.87MB/s]

 24%|████████▊                            | 17.7M/74.3M [00:11<00:13, 4.14MB/s]

 25%|█████████▎                           | 18.6M/74.3M [00:11<00:11, 4.71MB/s]

 26%|█████████▌                           | 19.1M/74.3M [00:11<00:12, 4.26MB/s]

 26%|█████████▋                           | 19.5M/74.3M [00:11<00:14, 3.86MB/s]

 27%|█████████▉                           | 19.9M/74.3M [00:11<00:15, 3.50MB/s]

 27%|██████████                           | 20.3M/74.3M [00:11<00:16, 3.24MB/s]

 28%|██████████▎                          | 20.7M/74.3M [00:12<00:17, 3.13MB/s]

 28%|██████████▌                          | 21.1M/74.3M [00:12<00:18, 2.90MB/s]

 29%|██████████▋                          | 21.5M/74.3M [00:12<00:17, 2.94MB/s]

 30%|██████████▉                          | 21.9M/74.3M [00:12<00:17, 2.91MB/s]

 30%|███████████▏                         | 22.4M/74.3M [00:12<00:17, 2.90MB/s]

 31%|███████████▍                         | 22.9M/74.3M [00:12<00:16, 3.14MB/s]

 32%|███████████▋                         | 23.4M/74.3M [00:13<00:16, 3.14MB/s]

 32%|███████████▉                         | 23.8M/74.3M [00:13<00:16, 3.10MB/s]

 33%|████████████                         | 24.3M/74.3M [00:13<00:16, 3.08MB/s]

 33%|████████████▎                        | 24.8M/74.3M [00:13<00:15, 3.12MB/s]

 34%|████████████▌                        | 25.2M/74.3M [00:13<00:16, 3.06MB/s]

 35%|████████████▊                        | 25.6M/74.3M [00:13<00:15, 3.07MB/s]

 35%|████████████▉                        | 26.0M/74.3M [00:13<00:17, 2.78MB/s]

 35%|█████████████▏                       | 26.4M/74.3M [00:14<00:17, 2.80MB/s]

 36%|█████████████▍                       | 26.9M/74.3M [00:14<00:15, 3.10MB/s]

 38%|██████████████▏                      | 28.4M/74.3M [00:14<00:16, 2.84MB/s]

 40%|██████████████▉                      | 29.9M/74.3M [00:14<00:10, 4.24MB/s]

 44%|████████████████▍                    | 32.9M/74.3M [00:15<00:05, 7.74MB/s]

 46%|████████████████▉                    | 34.0M/74.3M [00:15<00:05, 7.61MB/s]

 47%|█████████████████▍                   | 34.9M/74.3M [00:15<00:06, 5.78MB/s]

 48%|█████████████████▊                   | 35.6M/74.3M [00:15<00:06, 5.57MB/s]

 49%|██████████████████                   | 36.3M/74.3M [00:15<00:08, 4.24MB/s]

 50%|██████████████████▎                  | 36.8M/74.3M [00:16<00:09, 4.09MB/s]

 50%|██████████████████▌                  | 37.3M/74.3M [00:16<00:09, 3.89MB/s]

 51%|██████████████████▊                  | 37.7M/74.3M [00:16<00:10, 3.64MB/s]

 51%|██████████████████▉                  | 38.1M/74.3M [00:16<00:10, 3.34MB/s]

 52%|███████████████████▏                 | 38.4M/74.3M [00:16<00:11, 3.12MB/s]

 52%|███████████████████▎                 | 38.8M/74.3M [00:16<00:12, 2.83MB/s]

 53%|███████████████████▍                 | 39.1M/74.3M [00:16<00:13, 2.63MB/s]

 53%|███████████████████▋                 | 39.5M/74.3M [00:17<00:13, 2.67MB/s]

 54%|███████████████████▊                 | 39.8M/74.3M [00:17<00:13, 2.48MB/s]

 54%|████████████████████                 | 40.2M/74.3M [00:17<00:13, 2.61MB/s]

 55%|████████████████████▏                | 40.6M/74.3M [00:17<00:12, 2.69MB/s]

 55%|████████████████████▍                | 41.1M/74.3M [00:17<00:11, 2.79MB/s]

 56%|████████████████████▋                | 41.5M/74.3M [00:17<00:11, 2.85MB/s]

 56%|████████████████████▊                | 41.9M/74.3M [00:18<00:11, 2.71MB/s]

 57%|█████████████████████                | 42.2M/74.3M [00:18<00:13, 2.41MB/s]

 57%|█████████████████████                | 42.4M/74.3M [00:18<00:14, 2.20MB/s]

 58%|█████████████████████▎               | 42.8M/74.3M [00:18<00:13, 2.41MB/s]

 58%|█████████████████████▌               | 43.3M/74.3M [00:18<00:12, 2.53MB/s]

 59%|█████████████████████▊               | 43.7M/74.3M [00:18<00:11, 2.67MB/s]

 59%|█████████████████████▉               | 44.1M/74.3M [00:18<00:11, 2.71MB/s]

 60%|██████████████████████▏              | 44.6M/74.3M [00:19<00:10, 2.74MB/s]

 61%|██████████████████████▍              | 44.9M/74.3M [00:19<00:10, 2.70MB/s]

 61%|██████████████████████▌              | 45.4M/74.3M [00:19<00:10, 2.80MB/s]

 62%|██████████████████████▊              | 45.7M/74.3M [00:19<00:10, 2.66MB/s]

 62%|██████████████████████▉              | 46.2M/74.3M [00:19<00:10, 2.73MB/s]

 63%|███████████████████████▏             | 46.6M/74.3M [00:19<00:09, 2.85MB/s]

 63%|███████████████████████▍             | 47.0M/74.3M [00:19<00:09, 2.73MB/s]

 64%|███████████████████████▌             | 47.4M/74.3M [00:20<00:09, 2.75MB/s]

 64%|███████████████████████▊             | 47.7M/74.3M [00:20<00:10, 2.59MB/s]

 65%|███████████████████████▉             | 48.1M/74.3M [00:20<00:09, 2.65MB/s]

 65%|████████████████████████▏            | 48.5M/74.3M [00:20<00:09, 2.68MB/s]

 66%|████████████████████████▍            | 49.0M/74.3M [00:20<00:09, 2.73MB/s]

 67%|████████████████████████▌            | 49.4M/74.3M [00:20<00:08, 2.77MB/s]

 67%|████████████████████████▊            | 49.8M/74.3M [00:21<00:09, 2.70MB/s]

 68%|████████████████████████▉            | 50.1M/74.3M [00:21<00:08, 2.82MB/s]

 68%|█████████████████████████            | 50.4M/74.3M [00:21<00:09, 2.56MB/s]

 68%|█████████████████████████▎           | 50.7M/74.3M [00:21<00:10, 2.32MB/s]

 69%|█████████████████████████▍           | 51.0M/74.3M [00:21<00:10, 2.23MB/s]

 69%|█████████████████████████▌           | 51.4M/74.3M [00:21<00:09, 2.43MB/s]

 70%|█████████████████████████▊           | 51.9M/74.3M [00:21<00:08, 2.64MB/s]

 70%|██████████████████████████           | 52.3M/74.3M [00:21<00:08, 2.72MB/s]

 71%|██████████████████████████▏          | 52.7M/74.3M [00:22<00:08, 2.70MB/s]

 72%|██████████████████████████▍          | 53.1M/74.3M [00:22<00:07, 2.77MB/s]

 72%|██████████████████████████▋          | 53.6M/74.3M [00:22<00:07, 2.82MB/s]

 73%|██████████████████████████▉          | 54.0M/74.3M [00:22<00:07, 2.84MB/s]

 73%|███████████████████████████          | 54.4M/74.3M [00:22<00:06, 2.92MB/s]

 74%|███████████████████████████▎         | 54.9M/74.3M [00:22<00:07, 2.53MB/s]

 74%|███████████████████████████▌         | 55.3M/74.3M [00:23<00:07, 2.57MB/s]

 75%|███████████████████████████▋         | 55.7M/74.3M [00:23<00:06, 2.66MB/s]

 76%|███████████████████████████▉         | 56.2M/74.3M [00:23<00:06, 2.79MB/s]

 76%|████████████████████████████▏        | 56.6M/74.3M [00:23<00:06, 2.79MB/s]

 77%|████████████████████████████▎        | 56.9M/74.3M [00:23<00:06, 2.60MB/s]

 77%|████████████████████████████▌        | 57.3M/74.3M [00:23<00:06, 2.69MB/s]

 78%|████████████████████████████▊        | 57.7M/74.3M [00:23<00:05, 2.78MB/s]

 78%|████████████████████████████▉        | 58.2M/74.3M [00:24<00:05, 2.82MB/s]

 79%|█████████████████████████████▏       | 58.5M/74.3M [00:24<00:05, 2.74MB/s]

 79%|█████████████████████████████▍       | 59.0M/74.3M [00:24<00:05, 2.79MB/s]

 80%|█████████████████████████████▌       | 59.3M/74.3M [00:24<00:05, 2.62MB/s]

 80%|█████████████████████████████▊       | 59.7M/74.3M [00:24<00:05, 2.71MB/s]

 81%|█████████████████████████████▉       | 60.1M/74.3M [00:24<00:05, 2.76MB/s]

 82%|██████████████████████████████▏      | 60.6M/74.3M [00:25<00:04, 2.77MB/s]

 82%|██████████████████████████████▎      | 61.0M/74.3M [00:25<00:04, 2.78MB/s]

 83%|██████████████████████████████▌      | 61.4M/74.3M [00:25<00:04, 2.77MB/s]

 83%|██████████████████████████████▊      | 61.8M/74.3M [00:25<00:04, 2.77MB/s]

 84%|██████████████████████████████▉      | 62.2M/74.3M [00:25<00:04, 2.81MB/s]

 84%|███████████████████████████████▏     | 62.6M/74.3M [00:25<00:04, 2.70MB/s]

 85%|███████████████████████████████▍     | 63.0M/74.3M [00:25<00:04, 2.76MB/s]

 85%|███████████████████████████████▌     | 63.4M/74.3M [00:26<00:03, 2.84MB/s]

 86%|███████████████████████████████▊     | 63.8M/74.3M [00:26<00:03, 2.82MB/s]

 87%|████████████████████████████████     | 64.3M/74.3M [00:26<00:03, 2.85MB/s]

 87%|████████████████████████████████▏    | 64.6M/74.3M [00:26<00:03, 2.60MB/s]

 88%|████████████████████████████████▍    | 65.0M/74.3M [00:26<00:03, 2.69MB/s]

 88%|████████████████████████████████▌    | 65.4M/74.3M [00:26<00:03, 2.75MB/s]

 89%|████████████████████████████████▊    | 65.8M/74.3M [00:26<00:03, 2.80MB/s]

 89%|█████████████████████████████████    | 66.3M/74.3M [00:27<00:02, 2.83MB/s]

 90%|█████████████████████████████████▏   | 66.7M/74.3M [00:27<00:02, 2.81MB/s]

 90%|█████████████████████████████████▍   | 67.1M/74.3M [00:27<00:02, 2.83MB/s]

 91%|█████████████████████████████████▋   | 67.5M/74.3M [00:27<00:02, 2.85MB/s]

 91%|█████████████████████████████████▊   | 67.9M/74.3M [00:27<00:02, 2.83MB/s]

 92%|██████████████████████████████████   | 68.4M/74.3M [00:27<00:02, 2.85MB/s]

 93%|██████████████████████████████████▎  | 68.8M/74.3M [00:27<00:01, 2.94MB/s]

 93%|██████████████████████████████████▍  | 69.2M/74.3M [00:28<00:01, 2.93MB/s]

 94%|██████████████████████████████████▋  | 69.7M/74.3M [00:28<00:01, 2.95MB/s]

 94%|██████████████████████████████████▉  | 70.1M/74.3M [00:28<00:01, 2.93MB/s]

 95%|███████████████████████████████████▏ | 70.5M/74.3M [00:28<00:01, 2.89MB/s]

 96%|███████████████████████████████████▎ | 70.9M/74.3M [00:28<00:01, 2.90MB/s]

 96%|███████████████████████████████████▌ | 71.4M/74.3M [00:28<00:00, 2.96MB/s]

 97%|███████████████████████████████████▋ | 71.7M/74.3M [00:29<00:01, 1.89MB/s]

 97%|███████████████████████████████████▊ | 71.9M/74.3M [00:29<00:01, 1.64MB/s]

 97%|███████████████████████████████████▉ | 72.1M/74.3M [00:29<00:01, 1.60MB/s]

 98%|████████████████████████████████████▏| 72.5M/74.3M [00:29<00:00, 1.92MB/s]

 98%|████████████████████████████████████▎| 72.9M/74.3M [00:29<00:00, 2.09MB/s]

 99%|████████████████████████████████████▌| 73.3M/74.3M [00:29<00:00, 2.28MB/s]

 99%|████████████████████████████████████▋| 73.8M/74.3M [00:30<00:00, 2.46MB/s]

100%|████████████████████████████████████▉| 74.2M/74.3M [00:30<00:00, 2.58MB/s]

  0%|                                              | 0.00/74.3M [00:00<?, ?B/s]
100%|██████████████████████████████████████| 74.3M/74.3M [00:00<00:00, 363GB/s]

CustomDataset3-WithinSession: 100%|██████████| 4/4 [02:57<00:00, 45.23s/it]
CustomDataset3-WithinSession: 100%|██████████| 4/4 [02:57<00:00, 44.45s/it]
      score      time  samples  ... n_sessions         dataset  pipeline
0  0.667500  0.362611    120.0  ...          1  CustomDataset3       MDM
1  0.547500  0.354974    120.0  ...          1  CustomDataset3       MDM
2  0.614435  2.157532    768.0  ...          1  CustomDataset3       MDM
3  0.559516  4.388021   1356.0  ...          1  CustomDataset3       MDM

[4 rows x 9 columns]

Total running time of the script: (2 minutes 58.897 seconds)

Estimated memory usage: 610 MB

Gallery generated by Sphinx-Gallery