Tutorial 0: Getting Started#

This tutorial takes you through a basic working example of how to use this codebase, including all the different components, up to the results generation. If you’d like to know about the statistics and plotting, see the next tutorial.

# Authors: Vinay Jayaram <vinayjayaram13@gmail.com>
#
# License: BSD (3-clause)

Introduction#

To use the codebase you need an evaluation and a paradigm, some algorithms, and a list of datasets to run it all on. You can find those in the following submodules; detailed tutorials are given for each of them.

import numpy as np
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA
from sklearn.model_selection import GridSearchCV
from sklearn.pipeline import make_pipeline
from sklearn.svm import SVC

If you would like to specify the logging level when it is running, you can use the standard python logging commands through the top-level moabb module

import moabb
from moabb.datasets import BNCI2014_001, utils
from moabb.evaluations import CrossSessionEvaluation
from moabb.paradigms import LeftRightImagery
from moabb.pipelines.features import LogVariance

In order to create pipelines within a script, you will likely need at least the make_pipeline function. They can also be specified via a .yml file. Here we will make a couple pipelines just for convenience

Create pipelines#

We create two pipelines: channel-wise log variance followed by LDA, and channel-wise log variance followed by a cross-validated SVM (note that a cross-validation via scikit-learn cannot be described in a .yml file). For later in the process, the pipelines need to be in a dictionary where the key is the name of the pipeline and the value is the Pipeline object

pipelines = {}
pipelines["AM+LDA"] = make_pipeline(LogVariance(), LDA())
parameters = {"C": np.logspace(-2, 2, 10)}
clf = GridSearchCV(SVC(kernel="linear"), parameters)
pipe = make_pipeline(LogVariance(), clf)

pipelines["AM+SVM"] = pipe

Datasets#

Datasets can be specified in many ways: Each paradigm has a property ‘datasets’ which returns the datasets that are appropriate for that paradigm

/home/runner/work/moabb/moabb/moabb/datasets/fake.py:93: RuntimeWarning: Setting non-standard config type: "MNE_DATASETS_FAKEDATASET-IMAGERY-10-2--60-60--120-120--FAKE1-FAKE2-FAKE3--C3-CZ-C4_PATH"
  set_config(key, temp_dir)
/home/runner/work/moabb/moabb/moabb/datasets/fake.py:93: RuntimeWarning: Setting non-standard config type: "MNE_DATASETS_FAKEVIRTUALREALITYDATASET-P300-21-1--60-60-60-60-60-60-60-60-60-60-60-60-60-60-60-60-60-60-60-60-60-60-60-60-60-60-60-60-60-60-60-60-60-60-60-60-60-60-60-60-60-60-60-60-60-60-60-60-60-60-60-60-60-60-60-60-60-60-60-60--120-120-120-120-120-120-120-120-120-120-120-120-120-120-120-120-120-120-120-120-120-120-120-120-120-120-120-120-120-120-120-120-120-120-120-120-120-120-120-120-120-120-120-120-120-120-120-120-120-120-120-120-120-120-120-120-120-120-120-120--TARGET-NONTARGET--C3-CZ-C4_PATH"
  set_config(key, temp_dir)
[<moabb.datasets.bnci.BNCI2014_001 object at 0x7ffb1e485c00>, <moabb.datasets.bnci.BNCI2014_004 object at 0x7ffb1e4847f0>, <moabb.datasets.beetl.Beetl2021_A object at 0x7ffb1e485cf0>, <moabb.datasets.beetl.Beetl2021_B object at 0x7ffb1e485e10>, <moabb.datasets.gigadb.Cho2017 object at 0x7ffb1e484430>, <moabb.datasets.dreyer2023.Dreyer2023 object at 0x7ffb1e487910>, <moabb.datasets.dreyer2023.Dreyer2023A object at 0x7ffb1e485450>, <moabb.datasets.dreyer2023.Dreyer2023B object at 0x7ffb1e484580>, <moabb.datasets.dreyer2023.Dreyer2023C object at 0x7ffb1e487610>, <moabb.datasets.mpi_mi.GrosseWentrup2009 object at 0x7ffb1e8865f0>, <moabb.datasets.Lee2019.Lee2019_MI object at 0x7ffb1e486a10>, <moabb.datasets.liu2024.Liu2024 object at 0x7ffb1e487190>, <moabb.datasets.physionet_mi.PhysionetMI object at 0x7ffb1e485c60>, <moabb.datasets.schirrmeister2017.Schirrmeister2017 object at 0x7ffb1e7f6290>, <moabb.datasets.bbci_eeg_fnirs.Shin2017A object at 0x7ffb1e487850>, <moabb.datasets.stieger2021.Stieger2021 object at 0x7ffb261e8130>, <moabb.datasets.Weibo2014.Weibo2014 object at 0x7ffb1e886cb0>, <moabb.datasets.Zhou2016.Zhou2016 object at 0x7ffb261e80d0>]

Or you can run a search through the available datasets:

print(utils.dataset_search(paradigm="imagery", min_subjects=6))
[<moabb.datasets.alex_mi.AlexMI object at 0x7ffb1e4845b0>, <moabb.datasets.bnci.BNCI2014_001 object at 0x7ffb1e487400>, <moabb.datasets.bnci.BNCI2014_002 object at 0x7ffb1e485480>, <moabb.datasets.bnci.BNCI2014_004 object at 0x7ffb1e484640>, <moabb.datasets.bnci.BNCI2015_001 object at 0x7ffb1e485ab0>, <moabb.datasets.bnci.BNCI2015_004 object at 0x7ffb1e484610>, <moabb.datasets.gigadb.Cho2017 object at 0x7ffb1e4847f0>, <moabb.datasets.dreyer2023.Dreyer2023 object at 0x7ffb1e4847c0>, <moabb.datasets.dreyer2023.Dreyer2023A object at 0x7ffb1e484a00>, <moabb.datasets.dreyer2023.Dreyer2023B object at 0x7ffb1e487d00>, <moabb.datasets.dreyer2023.Dreyer2023C object at 0x7ffb1e4874c0>, <moabb.datasets.fake.FakeDataset object at 0x7ffb1e485f60>, <moabb.datasets.mpi_mi.GrosseWentrup2009 object at 0x7ffb1e484940>, <moabb.datasets.Lee2019.Lee2019_MI object at 0x7ffb1e485ff0>, <moabb.datasets.liu2024.Liu2024 object at 0x7ffb1e484e50>, <moabb.datasets.upper_limb.Ofner2017 object at 0x7ffb1e4849a0>, <moabb.datasets.physionet_mi.PhysionetMI object at 0x7ffb1e4849d0>, <moabb.datasets.schirrmeister2017.Schirrmeister2017 object at 0x7ffb1e485fc0>, <moabb.datasets.bbci_eeg_fnirs.Shin2017A object at 0x7ffb1e484430>, <moabb.datasets.bbci_eeg_fnirs.Shin2017B object at 0x7ffb1e487ee0>, <moabb.datasets.stieger2021.Stieger2021 object at 0x7ffb1e486b60>, <moabb.datasets.Weibo2014.Weibo2014 object at 0x7ffb1e4848e0>]

Or you can simply make your own list (which we do here due to computational constraints)

Paradigm#

Paradigms define the events, epoch time, bandpass, and other preprocessing parameters. They have defaults that you can read in the documentation, or you can simply set them as we do here. A single paradigm defines a method for going from continuous data to trial data of a fixed size. To learn more look at the tutorial Exploring Paradigms

Evaluation#

An evaluation defines how the training and test sets are chosen. This could be cross-validated within a single recording, or across days, or sessions, or subjects. This also is the correct place to specify multiple threads.

evaluation = CrossSessionEvaluation(
    paradigm=paradigm, datasets=datasets, suffix="examples", overwrite=False
)
results = evaluation.process(pipelines)
/home/runner/work/moabb/moabb/moabb/analysis/results.py:93: RuntimeWarning: Setting non-standard config type: "MOABB_RESULTS"
  set_config("MOABB_RESULTS", osp.join(osp.expanduser("~"), "mne_data"))
2025-05-28 20:11:10,814 INFO MainThread moabb.evaluations.base Processing dataset: BNCI2014-001

BNCI2014-001-CrossSession:   0%|          | 0/2 [00:00<?, ?it/s]MNE_DATA is not already configured. It will be set to default location in the home directory - /home/runner/mne_data
All datasets will be downloaded to this location, if anything is already downloaded, please move manually to this location
/home/runner/work/moabb/moabb/moabb/datasets/download.py:57: RuntimeWarning: Setting non-standard config type: "MNE_DATASETS_BNCI_PATH"
  set_config(key, get_config("MNE_DATA"))
2025-05-28 20:11:15,686 INFO MainThread moabb.evaluations.base AM+LDA | BNCI2014-001 | 1 | 0train: Score 0.786
2025-05-28 20:11:15,831 INFO MainThread moabb.evaluations.base AM+LDA | BNCI2014-001 | 1 | 1test: Score 0.802
2025-05-28 20:11:16,095 INFO MainThread moabb.evaluations.base AM+SVM | BNCI2014-001 | 1 | 0train: Score 0.797
2025-05-28 20:11:16,371 INFO MainThread moabb.evaluations.base AM+SVM | BNCI2014-001 | 1 | 1test: Score 0.774

BNCI2014-001-CrossSession:  50%|█████     | 1/2 [00:05<00:05,  5.69s/it]2025-05-28 20:11:20,766 INFO MainThread moabb.evaluations.base AM+LDA | BNCI2014-001 | 2 | 0train: Score 0.577
2025-05-28 20:11:20,909 INFO MainThread moabb.evaluations.base AM+LDA | BNCI2014-001 | 2 | 1test: Score 0.499
2025-05-28 20:11:21,279 INFO MainThread moabb.evaluations.base AM+SVM | BNCI2014-001 | 2 | 0train: Score 0.551
2025-05-28 20:11:21,584 INFO MainThread moabb.evaluations.base AM+SVM | BNCI2014-001 | 2 | 1test: Score 0.471

BNCI2014-001-CrossSession: 100%|██████████| 2/2 [00:10<00:00,  5.41s/it]
BNCI2014-001-CrossSession: 100%|██████████| 2/2 [00:10<00:00,  5.45s/it]

Results are returned as a pandas DataFrame, and from here you can do as you want with them

print(results.head())
      score      time  samples  ... n_sessions       dataset  pipeline
0  0.797068  0.145431    144.0  ...          2  BNCI2014-001    AM+SVM
1  0.773920  0.139920    144.0  ...          2  BNCI2014-001    AM+SVM
2  0.550733  0.251448    144.0  ...          2  BNCI2014-001    AM+SVM
3  0.471451  0.169812    144.0  ...          2  BNCI2014-001    AM+SVM
4  0.786458  0.026471    144.0  ...          2  BNCI2014-001    AM+LDA

[5 rows x 9 columns]

Total running time of the script: (0 minutes 12.257 seconds)

Estimated memory usage: 774 MB

Gallery generated by Sphinx-Gallery