moabb.datasets.BNCI2015_001#
- class moabb.datasets.BNCI2015_001[source]#
BNCI 2015-001 Motor Imagery dataset.
PapersWithCode leaderboard: https://paperswithcode.com/dataset/bnci2015-001-moabb-1
Dataset summary
#Subj
12
#Chan
13
#Classes
2
#Trials / class
200
Trials length
5 s
Freq
512 Hz
#Sessions
3
#Runs
1
Total_trials
14400
Participants
Population: ALS
Age: 24.8 years
Handedness: all right-handed
BCI experience: naive
Equipment
Amplifier: g.tec
Electrodes: active electrode
Montage: 10-20
Reference: Car
Preprocessing
Data state: filtered
Bandpass filter: 0.5-100 Hz
Steps: bandpass filter, notch filter
Re-reference: car
Data Access
DOI: 10.1109/tnsre.2012.2189584
Experimental Protocol
Paradigm: imagery
Feedback: none
Stimulus: cursor_feedback
Dataset from [1].
Dataset Description
This dataset contains EEG data from 12 subjects performing two-class motor imagery tasks (left vs right hand). Each subject participated in multiple sessions, with some subjects having three sessions.
Participants
12 healthy subjects
Gender: not specified
Age: not specified
Recording Details
Channels: 13 EEG electrodes
Sampling rate: 512 Hz
Reference: not specified
References
[1]Faller, J., Scherer, R., Costa, U., Opisso, E., Medina, J., Muller-Putz, G. R. (2014). A co-adaptive brain-computer interface for end users with severe motor impairment. PLOS ONE, 9(7), e101168. https://doi.org/10.1371/journal.pone.0101168
Notes
Note
BNCI2015_001was previously namedBNCI2015001.BNCI2015001will be removed in version 1.1.Added in version 0.4.0.