moabb.datasets.BNCI2015_001#

class moabb.datasets.BNCI2015_001[source]#

BNCI 2015-001 Motor Imagery dataset.

PapersWithCode leaderboard: https://paperswithcode.com/dataset/bnci2015-001-moabb-1

Dataset summary

#Subj

12

#Chan

13

#Classes

2

#Trials / class

200

Trials length

5 s

Freq

512 Hz

#Sessions

3

#Runs

1

Total_trials

14400

Participants

  • Population: ALS

  • Age: 24.8 years

  • Handedness: all right-handed

  • BCI experience: naive

Equipment

  • Amplifier: g.tec

  • Electrodes: active electrode

  • Montage: 10-20

  • Reference: Car

Preprocessing

  • Data state: filtered

  • Bandpass filter: 0.5-100 Hz

  • Steps: bandpass filter, notch filter

  • Re-reference: car

Data Access

  • DOI: 10.1109/tnsre.2012.2189584

Experimental Protocol

  • Paradigm: imagery

  • Feedback: none

  • Stimulus: cursor_feedback

Dataset from [1].

Dataset Description

This dataset contains EEG data from 12 subjects performing two-class motor imagery tasks (left vs right hand). Each subject participated in multiple sessions, with some subjects having three sessions.

Participants

  • 12 healthy subjects

  • Gender: not specified

  • Age: not specified

Recording Details

  • Channels: 13 EEG electrodes

  • Sampling rate: 512 Hz

  • Reference: not specified

References

[1]

Faller, J., Scherer, R., Costa, U., Opisso, E., Medina, J., Muller-Putz, G. R. (2014). A co-adaptive brain-computer interface for end users with severe motor impairment. PLOS ONE, 9(7), e101168. https://doi.org/10.1371/journal.pone.0101168

Notes

Note

BNCI2015_001 was previously named BNCI2015001. BNCI2015001 will be removed in version 1.1.

Added in version 0.4.0.